Biết a, b,c là 3 số tự nhiên đôi một nguyên tố cung nhau. Chứng minh rằng ab+bc+ca; a+b+c và số abc cũng nguyên tố cùng nhau.
Biết a, b,c là 3 số tự nhiên đôi một nguyên tố cung nhau. Chứng minh rằng ab+bc+ca; a+b+c và số abc cũng nguyên tố cùng nhau.
giả sử abc và ab+bc+ca không nguyên tố cùng nhau
=> tồn tại d là số nguyên tố và d là ước chung của abc và ab+bc+ca
abc chia hết cho d mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 TH:
TH1: a chia hết cho d => ab,ac chia hết cho d
mà ab+bc+ca chia hết cho d
=> bc chia hết cho d => b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d => ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
=> ac chia hết cho d => a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
Biết a, b,c là 3 số tự nhiên đôi một nguyên tố cùng nhau. Chứng minh rằng (ab; bc; ca; abc)=1.
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\)ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
Kết luận: abc và ab+bc+ca nguyên tố cùng nhau
Giải
Giả sử \(\left(abc,ab+bc+ca\right)\ne1\)
\(\Rightarrow\)Tồn tại d là số nguyên tố và \(d\inƯC\left(abc,ab+bc+ca\right)\)
\(abc⋮d\)mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 trường hợp
TH1: a chia hết cho d \(\Rightarrow\) ab,ac chia hết cho d
mà ab + bc + ca chia hết cho d
\(\Rightarrow\) bc chia hết cho d \(\Rightarrow\) b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d \(\Rightarrow\) ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\) ac chia hết cho d \(\Rightarrow\) a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d \(\Rightarrow\) ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\) ab chia hết cho d \(\Rightarrow\) a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
Vậy: giả thiết đưa ra là sai
Kết luận: abc và ab + bc + ca nguyên tố cùng nhau
Biết rằng a, b, c là ba số tự nhiên nguyên tố cùng nhau từng đôi một. Chứng minh rằng ƯCLN(a.b.c;a.b+b.c+c.a)
CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
cho 3 số tự nhiên a,b,c đôi một nguyên tố cùng nhau
CMR: (ab+bc+ca,abc)=1
cho a một số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng số a và ab +4 nguyên tố cùng nhau.
a và ab+4 NTCN
gọi d là ƯCLN(a;ab+4) (điêu kiện gì đó thêm vào nghen)
=>a chia het cho d và ab+4 chia hết cho d
=>ab chia hết cho d và ab+4 chia hết cho d
=>(ab+4)-(ab) chia hết cho d
=>4 chia hết cho d
=>d={1;2;4}
d khác 4;2 vì nếu d là 4;2 thì a là lẻ => không chia hết cho 2;4
=> d=1
=>a và ab+4 NTCN
cho like nếu đúng nghen
gọi d là ƯCLN(a;ab+4) (điêu kiện gì đó thêm vào nghen)
=>a chia het cho d và ab+4 chia hết cho d
=>ab chia hết cho d và ab+4 chia hết cho d
=>(ab+4)-(ab) chia hết cho d
=>4 chia hết cho d
=>d={1;2;4}
d khác 4;2 vì nếu d là 4;2 thì a là lẻ => không chia hết cho 2;4
=> d=1
=>a và ab+4 NTCN
chc\úc bn hok tốt @_@
gỉa sử a và ab+4 cùng chia hết cho 1 số tự nhiên d (d khác 0)
suy ra ab chia hết cho d suy ra (ab+4)-ab=4 chia hết cho d
suy ra d=1;2;4
a ko chia hết cho 2;4 do a lẻ
suy ra d=1
KL:..........
Cho a là số tự nhiên lẻ , b là một số tự nhiên . chứng minh rằng các số ab + 4 nguyên tố cùng nhau.
Giải : giả sử a và ab + 4 cùng chia hết cho một số tự nhiên d ( d khác 0 )
Như vậy thì ab chia hết d , do đó hiệu ( ab + 4 ) - ab=4 cũng chia hết cho d
=> d có thể bằng 1,2,4 . Nhưng a không chia hết cho 2 và 4 vì là số lẻ . Vậy d chỉ có thể bằng 1 nên các số a và ab + 4 nguyên tố cùng nhau **** bạn
Gọi k là ước số của a và ab+4
Do a lẻ => k lẻ
Ta biểu diễn:
{ab+4=kp (1)
{a=kq (2)
Thay (2) vào (1)
=> kqb+4 =kp
=> k(p-qb)=4
=> p-qb =4/k
do p-qb nguyên => k là ước lẻ của 4 => k=1
Vậy a và ab+4 nguyên tố cùng nhau
Cho số tự nhiên A = a x b y c z trong đó a,b,c là các số nguyên tố đôi một khác nhau, còn x, y, z là các số tự nhiên khác 0. Chứng minh rằng số ước của A được tính bởi công thức: x + 1 y + 1 z + 1
1) BIẾT a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một .Chứng minh ƯCLN( abc ; ab+bc+ca ) = 1
2) chứng minh rằng nếu a,b,c thỏa mãn bất đẳng thức \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}...\)thì /a/ = /b/ = /c/
dấu / / là giá trị tuyệt đối nha mk cần gấp các bạn cố giúp mk