Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bac bang
Xem chi tiết
Giỏi Toán 8
16 tháng 1 2022 lúc 14:49

ủa phải là 10zchứ?

Giỏi Toán 8
16 tháng 1 2022 lúc 14:54

Chỉnh đề xíu: Nếu A=10x2+10y2+10z2

                                =10(x2+y2+z2)

                                 ≥10(xy+yz+zx)=10

minA=10 ⇔x=y=z (chắc vậy).

 

Giỏi Toán 8
16 tháng 1 2022 lúc 14:55

Về phần c/m x2+y2+z2>=xy+yz+zx bạn có thể tham khảo:

https://hoc24.vn/cau-hoi/cm-a2-b2-c2-ab-bc-ca.4471311019169

Nhật Minh
Xem chi tiết
Ngọc Anh
Xem chi tiết
hiền nguyễn
Xem chi tiết
Minh Hiếu
26 tháng 4 2023 lúc 20:03

\(P=\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)

\(=\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}+\dfrac{2021}{xy+yz+zx}\)

\(\ge\dfrac{9}{\left(x+y+z\right)^2}+\dfrac{2021}{\dfrac{\left(x+y+z\right)^2}{3}}\)\(=9+\dfrac{2021}{\dfrac{1}{3}}=6072\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Ta có:

+) \(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\left(\text{Cô si}\right)\)

+) \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}\)

\(\ge\dfrac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\dfrac{9}{\left(x+y+z\right)^2}\left(\text{Svácxơ}\right)\)

 

pro
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 19:31

\(4x^2+4y^2\ge8xy\)

\(16x^2+z^2\ge8zx\)

\(16y^2+z^2\ge8yz\)

Cộng vế với vế:

\(20x^2+20y^2+2z^2\ge8\left(xy+yz+zx\right)\)

\(\Leftrightarrow10x^2+10y^2+z^2\ge4\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)

Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 1 2024 lúc 21:25

\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)

\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)

Cộng vế:

\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)

Nguyễn Phương Nga
Xem chi tiết
Nguyễn Văn Hùng
Xem chi tiết
Hoàng Phúc
2 tháng 3 2017 lúc 20:02

áp dụng BĐT C-S dạng engel : A >/ x+y+z

 áp dụng BĐT AM-GM x+y+z >/ căn xy + căn yz + căn zx 

=>minA = 1

truong le phuong thuy
2 tháng 3 2017 lúc 19:12

co ai giup em voi

Nguyễn Văn Hùng
3 tháng 3 2017 lúc 7:33

bạn ghi rõ ra dùm mình vs bạn Hoàng Phúc.mình chua học bdt này nên hơi khó hiểu tí

Arata Trinity Seven
Xem chi tiết
tth_new
3 tháng 8 2019 lúc 20:14

Xét nào:)

Từ giả thiết suy ra x + y + z > 3

Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)

Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)

Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)

Đẳng thức xảy ra khi x = y = z = 1

Is it right?!?

Arata Trinity Seven
3 tháng 8 2019 lúc 21:13

thank ban

Arata Trinity Seven
3 tháng 8 2019 lúc 21:18

bạn giải thích rõ hộ mình dòng 2 với