Tìm GTNN
B= 15/(4x-4x^2-5)
Tìm GTNN
B= (4x^2 - 6x +1)/(4x^2-4x+1)
Đề bài ko chính xác
Biểu thức này chỉ có GTLN, không có GTNN
Cho hpt \(\left\{{}\begin{matrix}2x+y=8\\4x+my=2m+18\end{matrix}\right.\)
Với (x,y) là nghiệm duy nhất. Tìm m để:
a) \(A=x^2+y^2\) đạt GTNN
b) \(B=xy\) đạt GTLN
a: áp dụng bđt bunhiacopxki: (2x+y)2 ≤(22+12)(x2+y2)
⇔x2+y2 nn=64/5
dấu bằng xảy ra khi x=2y=8/5
thay vào pt(2) tìm m....
b: áp dụng bđt cauchy: 2x+y≥2√2xy
⇔xy ln=8 khi x=\(\dfrac{y}{2}\)=2
thay vào tìm m ở pt(2)
Tìm x:
a.12x^2-4x(3x-5)=10x-17
b.1/5x.(10x-15)-2x(x-5)=12
c.3x(4/3x+1)-4x(x-2)=10
2.tính gtbt
A=5-4x(x-2)+4x^2 tại x=4
làm khuyến mại 1 câu;
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
x/2 - ( 3x/5 - 13/5 ) = -( 7/5 + 7/10x )
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
tìm giá trị lớn nhất của f(x)=(x2-4x+15)/x2-4x+5
1.Tìm GTNN
a.A=1/-x^2+2x-2
b.B=2/-4x^2+8x-5
2.Tìm GTLN
a.A=3/2x^2+2x+3
b.B=5/3x^2+4x+15
bài 1
a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)
Dấu "=" xảy ra khi x=1
Vậy Amin=-1 khi x=1
b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)
Dấu "=" xảy ra khi x=1
Vậy Bmin=-2 khi x=1
bài 2:
a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
dấu "=" xảy ra khi x=-1/2
Vậy Amax=6/5 khi x=-1/2
b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu '=" xảy ra khi x=-2/3
Vậy Bmax=15/41 khi x=-2/3
tìm GTNN
A=(x^2 -3x+1) . (x^2-3x-2) +2018
B=(x-1)(x+5)(x^2+4x+5)=2018
C=15-4x^2+4x
D=(x-1)(x-3)=21
Tìm GTNN:
a) \(\dfrac{1}{-x^2+2x-4}\)
b) \(\dfrac{12}{12x-4x^2-13}\)
c) \(\dfrac{x^2-4x-4}{x^2-4x+5}\)
d) \(\dfrac{15}{-6x^2-5y^2+10xy-4x+10y-19}\)
e)\(\dfrac{x^2-2011}{4.\left(x^2+1\right)}\)
tìm x biết 16x^2-(4x-5)^2=15
\(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-\left(16x^2-40x+25\right)=15\)
\(\Leftrightarrow16x^2-16x^2+40x-25=15\)
\(\Leftrightarrow40x=40\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
16x2 - ( 4x - 5 )2 = 15
<=> 16x2 - ( 16x2 - 40x + 25 ) = 15
<=> 16x2 - 16x2 + 40x - 25 = 15
<=> 40x - 25 = 15
<=> 40x = 40
<=> x = 1
<=> x =
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1