Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phan Văn Trường
Xem chi tiết
Cục Bông
Xem chi tiết
mikusanpai(՞•ﻌ•՞)
7 tháng 1 2021 lúc 11:52

x∈[0, ∞)

Lizy
Xem chi tiết
Ngô Hải Nam
28 tháng 6 2023 lúc 21:38

\(ĐKXD:\left\{{}\begin{matrix}2x^2+5x-3\ge0\\2x-1\ge0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x^2+6x-x-3\ge0\\2x\ge1\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x\left(x+3\right)-\left(x+3\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left(x+3\right)\left(2x-1\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\2x-1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\2x-1\le0\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x\le\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-3\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

Yuu~chan
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 22:03

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

b: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

c: Thay \(x=4-2\sqrt{3}\) vào P, ta được:

\(P=\dfrac{-3}{\sqrt{3}-1+3}=\dfrac{-3}{2+\sqrt{3}}=-6+3\sqrt{3}\)

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 22:29

a: Để P nguyên thì \(-3⋮\sqrt{x}+3\)

\(\Leftrightarrow\sqrt{x}+3=3\)

hay x=0

Lê Thị Tuyết Nhung
Xem chi tiết
hoang đinh nguyên
9 tháng 12 2017 lúc 23:29

lớp 10 học trường mô đây ?

Trần Anh Tuấn
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 22:20

1.

Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN

\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ

Hàm có 4 tiệm cận

Nguyễn Việt Lâm
18 tháng 8 2021 lúc 22:27

2.

Căn thức của hàm luôn xác định

Ta có:

\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn

\(\Rightarrow x=2\) ko phải TCĐ

\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)

\(\Rightarrow x=3\) là tiệm cận đứng duy nhất

Phương Trinh
Xem chi tiết
alibaba nguyễn
10 tháng 9 2016 lúc 7:50

Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}}\)

Ta có a2 + b= 9

a + b - ab = 3

Tới đâu thì bài toán đơn giản rồi nên bạn tự làm nha

alibaba nguyễn
10 tháng 9 2016 lúc 7:53

Câu b làm tương tự

Dương Thị Thu Hiền
Xem chi tiết