Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yuuki
Xem chi tiết
Đặng Tiến
26 tháng 7 2016 lúc 20:04

a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)

Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)

nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)

Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)

b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)

Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)

Hoàng C5
14 tháng 9 2018 lúc 22:26

a) x2 + 2xy + 1 +y2 = (x2+2xy+y2)+1=(x+y)2+1 mà (x+y)2 luôn lớn hơn hoặc bằng 0 với mọi x,y

=>x2+2xy+1+y2>1>0

b)x-x2-1=-(x2-x+1)=-((x2-2.x.0,5+0,25)+0,75)=-((x-0,5)2+0,75) mà (x-0,5)2 luôn lớn hơn hoặc bằng 0 vớ mọi x

=>x-x2-1<0

TƯỞNG KHÔNG DỄ NHƯNG DỄ KHÔNG TƯỞNG!

Trần Lý Anh Tuấn
Xem chi tiết
@Nk>↑@
28 tháng 10 2018 lúc 18:50

\(x^2-2xy+y^2+1=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+1>0\)

Vậy \(\left(x-y\right)^2+1>0\) với mọi \(x,y\in R\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 11 2017 lúc 16:42

Ta có:

x2 – 2xy + y2 + 1

= (x2 – 2xy + y2) + 1

= (x – y)2 + 1.

(x – y)2 ≥ 0 với mọi x, y ∈ R

⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).

bê trần
Xem chi tiết
Nhã Doanh
13 tháng 8 2018 lúc 20:45

\(x^2-2xy+y^2+1=\left(x^2-2xy+y^2\right)+1=\left(x-y\right)^2+1>0\) nhé!

\(x-x^2-1=-\left(x^2-x+1\right)=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\)

ONCE love Twice
Xem chi tiết
Vương Quyền
Xem chi tiết
Hoàng Yến
9 tháng 12 2019 lúc 22:04

a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)

Khách vãng lai đã xóa
Nguyễn Diễm Ngọc
Xem chi tiết
Hà Chí Hiếu
Xem chi tiết
Akai Haruma
15 tháng 1 2023 lúc 20:05

Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$

$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.

$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$

$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)

Akai Haruma
17 tháng 1 2023 lúc 17:58

$P=(x+1)^3-(x-1)^3-3[(x-1)^2+(x+1)^2]$

$=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-3[(x^2-2x+1)+(x^2+2x+1)]$

$=6x^2+2-3(2x^2+1)=3(2x^2+1)-3(2x^2+1)=0$ là giá trị không phụ thuộc vào giá trị của biến.

Hoàn Biền Văn Vũ
Xem chi tiết
Trịnh Thành Công
1 tháng 7 2017 lúc 8:56

a)Ta có: \(a^2+2a+b^2+1=a^2+2a+1+b^2\)

                                                 \(=\left(a+1\right)^2+b^2\)

                         Vì \(\left(a+1\right)^2\ge0;b^2\ge0\)

                  \(\left(a+1\right)^2+b^2\ge0\)

b)\(x^2+y^2+2xy+4=\left(x+y\right)^2+4\)

                 Vì \(\left(x+y\right)^2\ge0\Rightarrow< 0\left(x+y\right)^2+4\left(đpcm\right)\)

c)Ta có:\(\left(x-3\right)\left(x-5\right)+2=x^2-8x+15+2\)

                                                      \(=x^2-8x+16+1\)

                                                      \(=\left(x-4\right)^2+1\)

                    Vì \(\left(x-4\right)^2\ge0\)

                              \(\Rightarrow\left(x-4\right)^2+1\ge1\)

Vậy (x-3)(x-5) + 2 > 0 ∀ x R