Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
chứng minh:
a. x2- 4xy + y2+ 2 > 0 với mọi số thực x, y.
chứng minh rằng : x^2 - 2xy + y^2 + 1 > 0 với mọi số thực của x và y
Chứng minh rằng
x^2-2xy+y^2+1>0 với mọi số thực x và y
x-x^2-1<0 với mọi số thực x
x2-6xy+y2+1 > 0 với mọi số thực của x và y
-25x2+5x-1 < 0 với mọi số thực của x
chứng minh rằng; đa thức sau không âm với mọi gtrị của x và y
X2+y2-2xy+x-y+1
Chứng minh rằng
x^2-2xy+y^2+1>0 với mọi số thực x và y
x-x^2-1<0 với mọi số thực x
giúp mình với ah
chứng minh
a, x^2-2xy+y^2+1>0 với mọi số thực x va y
b, x-x^2-1<0 với mọi số thực x
Cho x, y, z ≠0 và (y2+z2−x2)/2yz +(z2+x2−y2)/2xz +(x2+y2−z2)/2xy =1. Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng 1 và một phân thức bằng -1.
chứng minh rằng: x^2-2xy-x+1+2y^2>0(với mọi số thực x;y)