Tìm GTNN của biểu thức A, biết \(A=2014\sqrt{x}+2015\sqrt{1-x}\)
Tìm GTNN của biểu thức A, biết \(A=2014\sqrt{x}+2015\sqrt{1-x}.\)
Tìm GTNN của biểu thức A
A = \(2014.\)\(\sqrt{x}+2015.\sqrt{1-x}\)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
ĐK: 0<=x<=1
=>\(\sqrt{x}\ge x,\sqrt{1-x}\ge1-x\)
=> \(A\ge2014x+2015-2015x=2015-x\ge2014\left(vìx\le1\right)\)
min A=2014<=> x=1
1)
Tìm GTNN;GTLN của biểu thức:
B=|x-2013|+|x-2014|+|x-2015|
2)
\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\)(x>=0)
1) B\(\ge\left|x-2013+2015-x\right|+\left|x-2014\right|\ge2\)
dấu bg xảy ra khi (x-2013)(2015-x)\(\ge\)0 và x-2014=0
Câu 1: Cho 0<x<3. tìm GTNN của biểu thức A=\(\dfrac{81x}{3-x}\)+\(\dfrac{3}{x}\)
Câu 2: Tìm GTLN của biểu thức A= \(\dfrac{1}{3x-2\sqrt{6x}+5}\)
Câu 3: tìm GTNN của biểu thức A, biết A= \(2014\sqrt{x}+2015\sqrt{1-x}\)
Câu 1:
\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)
Dấu "=" xảy ra <=> x = 0,3
Câu 2:
\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)
Câu 3:
\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)
=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)
Dấu "=" xảy ra <=> x = 1
Câu 1: Cho 0<x<3. tìm GTNN của biểu thức A=\(\dfrac{81x}{3-x}\)+\(\dfrac{3}{x}\)
Câu 2: Tìm GTLN của biểu thức A= \(\dfrac{1}{3x-2\sqrt{6x}+5}\)
Câu 3: tìm GTNN của biểu thức A, biết A= \(2014\sqrt{x}+2015\sqrt{1-x}\)
Tìm giá trị nhỏ nhất của biểu thức A = \(2014\sqrt{x}+2015\sqrt{1-x}\)
Tìm giá trị nhỏ nhất của biểu thức
A=\(2014\sqrt{x}+2015\sqrt{1-x}\)
a) Tính giá trị của biểu thức: \(A=2x^2+3x^2-4x+2\)
với \(x=\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
b) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
CM: x = y
Tìm GTNN của biểu thức : A = |2014 - x| + |2015 - x| + |2016 - x|
Ta có : A = l2014 - x l + l 2015 - x l + l2016 - x l
=> A = l2014 - x l + l2015 - x l + l x-2016 l (Với x>2016 )
=> A >= l 2014 -x + x- 2016 l + l2015 -x l
=> A >= l2014-2016l + l2015-x l
=> A >= l -2 l + l2015 - x l
=> A >= 2 + l2015 - x l
Vì l2015 - x l >=0 Nên <=> A >= 2 +0
=> A >=2
Vậy Min A =2 <=> l2015 - x l = 0
=> 2015 - x= 0 => x= 2015-0 =2015
Vậy tại x= 2015 thì GTNN của A =2