Cho tam giác ABC đồng dạng với tam giác DEF có góc A=30 độ, góc B= 60 độ AC= 6 cm. Số đo góc F là bao nhiêu?
cho tam giác ABC đồng dạng với tam giác DEF với tỉ số đồng dạng k=1/3.Biết ab=3cm,ac=4cm góc E=60 độ F=30 độ.Tính độ dài các cạnh DE,DF số đo các góc của tam giác ABC
ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF=k=1/3
=>3/DE=4/DF=1/3
=>DE=9cm; DF=12cm
ΔABC đồng dạng với ΔDEF
=>góc B=góc E=60 độ; góc C=góc F=30 độ
góc A=góc D=180-60-30=90 độ
cho hai tam giác ABC , DEF có góc A=50 độ , góc E=70 độ , góc F=60 độ , AB=DE , AC=DE . Chứng minh : tam giác ABC=tam giác DEF
\(\widehat{D}=180^0-\widehat{E}-\widehat{F}=50^0=\widehat{A}\\ \left\{{}\begin{matrix}AB=DE\\\widehat{A}=\widehat{D}\\AC=DE\end{matrix}\right.\Rightarrow\Delta ABC=\Delta DEF\left(c.g.c\right)\)
Cho 2 tam giác ABC, tam giác DEF có góc A = 50 độ , góc E = 70 độ , góc F= 60 độ ,AB=DE,AC=DF. Chứng minh tam giác ABC=tam giác DEF
Xét t/giác DEF có \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{D}=180^0-\widehat{E}-\widehat{F}=180^0-70^0-60^0=50^0\)
Xét t/giác ABC và t/giác DEF
có: AB = DE (gt)
AC = DF (gt)
\(\widehat{A}=\widehat{D}=50^0\)
=> t/giác ABC = t/giác DEF (c.g.c)
Cho tam giác ABC có góc A lớn hơn 60 độ, góc B lớn hơn 30 độ. Trên nửa mp bờ BC ko chứa A, lấy D,E sao cho góc ABE=góc CBD và bằng 90 độ và góc BAE= góc BCD và bằng 60 độ . Gọi F là trung điểm AE, H là trung điểm CD, G là giao của AC và DE. CMR
a) Tam giác EDB đồng dạng vs tam giác ABC
b) Tam giác FGH bằng tam giác ABC
Cho 2 tam giác ABC, tam giác DEF có góc A = 50 độ , góc E = 70 độ , góc F= 60 độ ,AB=DE,AC=DF. Chứng minh tam giác ABC=tam giác DEF
cho tam giác abc và tam giác a'b'c' có góc a bằng góc a' =60 độ góc c= 35độ, góc c' bằng bao nhiêu độ để tam giác abc đồng dạng với tam giác a'b'c'
Cho tam giác ABC có AB:AC:CB = 2:3:4 và chu vi bằng 54 cm. Tam giác DEF có DE = 3 cm, DF = 4,5 cm, EF = 6 cm.
a) Tam giác ABC và DEF có đồng dạng với nhau ko? Vì sao?
b) Biết góc A = 105 độ, góc E = 45 độ. Tính các góc còn lại của mỗi tam giác.
a, 2 tam giác đồng dạng
CM:
xét tam giác ta có: \(2x+3x+4x=56\)(\(x\)là hệ số sao cho \(2x;3x;4x\)là ba cạnh của tam giác ABC)
=) \(x=6\)
tỉ lệ cạnh thì cậu chứng minh đc 2 tam giác đồng dạng nhé
b,vì hai tam đồng dạng nên
\(\widehat{ABC}=\widehat{DEF}=45^O\)
\(\widehat{BAC}=\widehat{EDF}=105^O\)
tổng 3 góc trong tam giác =180o
thì tính đc \(\widehat{ACB}=\widehat{DFE}=30^O\)
sao khi ra x=6 nhân vào 2x=2.6=12=AB
3x=3.6=18=AC
BC=4x=4.6=24
tỉ lệ cạnh \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)
hay \(\frac{12}{3}=\frac{18}{4,5}=\frac{24}{6}\)
Cho tam giác ABC có góc A=90 độ;AB=3cm;AC=4cm;BC=5cm.Tam giác DEF có góc D=90 độ;DF=3cm;DE=6cm.Vẽ phân giác BM của góc BAC.Chứng minh tam giác ABM đồng dạng với tam giác DEF
Xét ΔABC có BM là đường phân giác
nên AM/AB=CM/CB
=>AM/3=CM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: AM=1,5(cm)
Xét ΔABM vuông tại A và ΔDEF vuông tại D có
AB/DE=AM/DF
Do đó: ΔABM\(\sim\)ΔDEF
a)cho tam giác ABC =tam giác A'B'C'.biết AB=3cm,AC=7cm, BC=9cm, hãy suy ra độ dài có cạnh của tam giác A'B'C'
b)cho tam giác ABC = tam giác DEF. Biết góc A=60 độ, góc B=80 độ, tính số đo các góc C, B ,E
b: \(\widehat{C}=40^0\)
\(\widehat{E}=80^0\)