so sánh A=căn 2012 + căn 2014 với B=2 căn 2013
Cho A= căn 2012 + căn 2013 + căn 2014
B= căn 2009 + căn 2011 +căn 2019
So sánh A với B
Mọi người giải giúp bài này với,cần gấp lắm hix
So sánh : căn 2013+ căn 2015 và 2.căn 2014
\(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013.2015}=4028+2\sqrt{2013.2015}\)
\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2\sqrt{2014^2}\)
Ta có: \(2013.2015=2014^2-1< 2014^2\)
Do đó \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
so sánh căn 2016-căn 2015 và căn 2015 -căn 2014
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
căn 2016+căn 2015>căn 2015+căn 2014
=>1/(căn 2016+căn 2015)<1/(căn 2015+căn 2014)
=>căn 2016-căn 2015<căn 2015-căn 2014
so sánh căn 2019 - căn 2014 và căn 19 - căn 14
so sánh căn 2003 + căn 2015 và 2 căn 2014 ... không sử dụng máy tính
cho x>2014. Chứng minh bất đẳng thức căn (x-2013)/(x+2) +căn(x-2014)/x bé hơn hoặc bằng 1/2 căn 2015+1/2căn 2014
SO SÁNH A = (2012^2013+2013^2013)^2014 & B = (2012^2014+2013^2014)^2013
ta thấy:
2012^2013<2012^2014( vì có cùng cơ số 2012 và 2013<2014)
2013^2013<2013^2014(vì có cùng cơ số 2013 và 2013<2014)
suy ra 2012^2013+2013^2013<2013^2014+2013^2014
suy ra (2012+2013)^2013<(2013+2013)^2014
so sánh A=2012/2013+2013/2014 và B=2012+2013/2013+2014
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A
so sánh căn x + 1 phần căn x + 2 với 1
so sánh căn x + 1 phần căn x + 2 với căn x + 1 phần căn x + 2 tất cả bình phương
a) Có \(x+1< x+2\)
\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)
b) Vì \(\sqrt{x+1}< \sqrt{x+2}\)
\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)
\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)
hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)