Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Bá Hoàng Thạch
Xem chi tiết
Trinh Tạ
Xem chi tiết
Đoàn Đức Hà
12 tháng 8 2021 lúc 16:45

\(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013.2015}=4028+2\sqrt{2013.2015}\)

\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2\sqrt{2014^2}\)

Ta có: \(2013.2015=2014^2-1< 2014^2\)

Do đó \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)

Khách vãng lai đã xóa
Trang Khúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 10:47

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)

căn 2016+căn 2015>căn 2015+căn 2014

=>1/(căn 2016+căn 2015)<1/(căn 2015+căn 2014)

=>căn 2016-căn 2015<căn 2015-căn 2014

aloalo
Xem chi tiết
Nguyễn như ý
Xem chi tiết
Nguyễn Huyền My
8 tháng 10 2018 lúc 20:29

hfhfdh

Loan Trinh
Xem chi tiết
PIKACHU
Xem chi tiết
Devil
12 tháng 3 2016 lúc 16:02

ta thấy:

2012^2013<2012^2014( vì có cùng cơ số 2012 và 2013<2014)

2013^2013<2013^2014(vì có cùng cơ số 2013 và 2013<2014)

suy ra 2012^2013+2013^2013<2013^2014+2013^2014

suy ra (2012+2013)^2013<(2013+2013)^2014

PIKACHU
12 tháng 3 2016 lúc 19:04

bạn ơi đọc lại đề bài đi

Nguyễn Hữu Tài
Xem chi tiết
Phạm Nguyễn Tất Đạt
15 tháng 5 2016 lúc 16:29

Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)

Ta có A=2012/2013+2013/2014

         A=1-1/2013+1-1/2014

        A=(1+1)-(1/2013+1/2014)

        A=2-(1/2013+1/2014)

Mà 1/2013<1/2;1/2014<1/2

=>1/2013+1/2014<1/2+1/2=1

=>2-(1/2013+1/2014)>1

=>A>1

Mà B<1

=>A>B

Đặng Minh Triều
15 tháng 5 2016 lúc 17:01

\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)

Vậy B<A

Đặng Nguyễn Thu Quỳnh
Xem chi tiết
???????
24 tháng 7 2019 lúc 17:16

a)  Có \(x+1< x+2\)

\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)

\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)

b)  Vì \(\sqrt{x+1}< \sqrt{x+2}\)

\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)

\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)

hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)