cho biểu thức A = 2x-1 trên x-3
a) với điều kiện nào của x thì B là 1 phân thức
b) tìm x để B = -1
cho biểu thức B = 2x-1 trên x-3
a) với điều kiện nào của x thì B là 1 phân thức
b) tìm x để B = -1
cho biểu thức A = x-1 trên x+3
a) với điều kiện nào của x thì A là 1 phân thức
b) tìm x để A = -1
a) dk x+3 \(\ne\) 0--> x \(\ne\)-3
b) -1=\(\frac{x-1}{x+3}\)
-> -1.(x+3)=x-1
->-x-3=x-1
->-x-x=3-1
->-2x=2
-> x=-1
vay x=-1 thi A =-1
\(A=\dfrac{x^2-2x+1}{x^2-1}\)
a) tìm điều kiên xác định của phân thức
b)rút gọn phân thức
c)tính giá trị của phân thức tại x=3
BÀI5
\(B=\dfrac{6x-2y}{9x^2-y^2}\)
a)tìm điều kiện xác định của phân thức
b)rút gọn phân thức
c)tính giá trị của phân thức tại x=1 y=-1/2
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
Bài 1: Cho biểu thức: P =\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)
a) Tìm điều kiện của x để biểu thức P xác định.
b) Rút gọn biểu thức P.
c) Với giá trị nào của x thì P = 2.
d) Tìm các giá trị nguyên của x để P nhận giá trị nguyên.
Mình phải đi ăn nên chiều mình làm nốt câu d nhé
a) Điều kiện để P được xác định là: \(x\ne1;x\ne-1\)
b) \(P=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}x-\dfrac{x^2-1}{x^2+2x+1}\)
\(P=\left(\dfrac{\left(x+1\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\right):\dfrac{2x}{5x-5}x-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}\)
\(P=0:\dfrac{2x}{5x-5}x-\dfrac{x-1}{x+1}\)
\(P=-\dfrac{x-1}{x+1}\)
c) Theo đề ta có:
\(P=2\)
\(\Leftrightarrow-\dfrac{x-1}{x+1}=2\)
\(\Leftrightarrow-\left(x-1\right)=2x+2\)
\(\Leftrightarrow-x-2x=2-1\)
\(\Leftrightarrow-3x=1\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
d) \(P=-\dfrac{x-1}{x+1}\) nguyên khi:
\(\Leftrightarrow x-1⋮-\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)-2⋮-\left(x+1\right)\)
\(\Leftrightarrow-2⋮-\left(x+1\right)\)
\(\Leftrightarrow2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)\)
Vậy \(P\) nguyên khi \(x\in\left\{-2;0;-3;1\right\}\)
Bài 1 : Tìm x, y : a, (x-5).(y+3)=10
b, x.y-x-y=1
Bài 2 : cho biểu thức 3/x-1
a, với điều kiện nào của x thì biểu thức là 1 phân số
b, tìm các giá trị nguyên của x để giá trị phân số là một số nguyên
Cho biểu thức A=(\(\dfrac{x+1}{X-1}-\dfrac{x-1}{x+1}\)):\(\dfrac{2x}{5x-5}\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A biết x =-3
c) Tính giá trị của A biết |x-2|=4-2x
d)Với giá trị nào của x thì A =2
e)Tìm điều kiện của x để A <0
f)Tìm giá trị của x để A nhận giá trị nguyên
g) Tìm điều kiện của x để A >-1
a)
A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)
\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
MTC: 5(x-1)(x+1)
\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)
\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)
\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)
\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)
\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)
\(\Leftrightarrow10x+10\)
cho biểu thức B=[ x+1/ 2x-2 +3/x2 -1 -x+3/2x+2] .2x2 -2/5
a, tìm điều kiện của biến để phân thức xác định
b, c/m rằng khi giá trị của biểu thức xác định thì nó không phụ thuộc vào biến x ?
cho phân thức B = \(\frac{x^2+2x+1}{x^2-1}\)
a/ Với điều kiện nào của x thì giá trị của phân thức B xác định
b/ Rút gọn phân thức
c/ Tìm giá trị của x để giá của phân thức B bằng 0
a, ĐKXĐ : \(x^2+2x+1\ne0=>\left(x+1\right)^2\ne0\)
=> \(x\ne-1\)
b, Ta có \(B=\frac{x^2+2x+1}{x^2-1}\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)
c, Đề P =0
<=> \(\left(x+1\right)^2=0\)
=> x=-1
a/ x khác cộng trừ 1
b/ B= 1/(x-1)
c/ vô nghiệm
cho biểu thức \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
a,Tìm điều kiện đối với x để biểu thức được xác định
b, Rút gọn
c, Với giá trị nào của x thì biểu thức được xác định
a) \(ĐKXĐ:x\ne1\)
b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)
\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)
\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)
\(=\frac{1}{x-1}\)
c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .
P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.
Tại thấy câu c k khác j câu a !