Những câu hỏi liên quan
Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 16:24

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Lê Song Phương
30 tháng 3 2022 lúc 7:32

Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)

Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)

\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)

Vậy BĐT được cm 

Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Khách vãng lai đã xóa
Đỗ Đức Hải
29 tháng 3 2022 lúc 16:21

Nma mik lớp 4

Khách vãng lai đã xóa
Nguyễn Minh Tuấn
Xem chi tiết
Lam Ngo Tung
30 tháng 12 2019 lúc 20:33

a) Vì x;y;z > 0 nên áp dụng bất đẳng thức Bunhiakovsky : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) , ta được :

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}\)

\(\Leftrightarrow\)\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Vậy \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\left(ĐPCM\right)\)

b) Ta chứng minh bất đẳng thức phụ :\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3ac-3bc\ge0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ab-ac\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+ab+ac\right)\)

Vì a,b,c > 0 nên áp dụng bất đẳng thức Bunhiakovsky : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) , ta được :

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)

\(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

Vậy \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\left(ĐPCM\right)\)

Khách vãng lai đã xóa
Hoàng Phúc
Xem chi tiết
Hoàng Lê Bảo Ngọc
8 tháng 8 2016 lúc 22:40

1) Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\)  :

Ta có : \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Đặng Công Minh Nghĩa
Xem chi tiết
Minh Hiếu
29 tháng 3 2022 lúc 20:34

Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)

Dấu "=" ⇔ a=b=c=3

Nguyễn Việt Lâm
29 tháng 3 2022 lúc 20:52

Áp dụng BĐT Cô-si:

\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\) 

Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)

Cộng vế:

\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Nguyễn Bá Hùng
Xem chi tiết
tôn thiện trường
Xem chi tiết
Vũ Bùi Nhật Linh
Xem chi tiết
Nguyễn Uyên
Xem chi tiết
Akai Haruma
5 tháng 2 2017 lúc 9:56

Lời giải:

\(\text{BĐT}\Leftrightarrow \frac{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}}{abc}\geq\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) \((\star)\)

Điều này hiển nhiên đúng vì theo Cauchy-SChwarz kết hợp AM-GM:

\(\text{VT}_{\star}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\geq \frac{(a^2+b^2+c^2)^2}{ab+bc+ac}\geq ab+bc+ac\)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c$

zZz Cool Kid_new zZz
Xem chi tiết
tth_new
25 tháng 4 2019 lúc 9:04

P/s: Không biết cách này có đúng không?

Chuyển vế qua và đặt thừa số chung,ta cần chứng minh:

\(a^2\left(\frac{1}{b+c}-\frac{1}{c+a}\right)+b^2\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+c^2\left(\frac{1}{a+b}-\frac{1}{b+c}\right)\ge0\)

\(\Leftrightarrow\frac{a^2\left(a-b\right)}{\left(b+c\right)\left(c+a\right)}+\frac{b^2\left(b-c\right)}{\left(a+c\right)\left(a+b\right)}+\frac{c^2\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}\ge0\)

\(\Leftrightarrow\frac{a^2\left(a-b\right)\left(a+b\right)+b^2\left(b-c\right)\left(b+c\right)+c^2\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{a^2\left(a^2-b^2\right)+b^2\left(b^2-c^2\right)+c^2\left(c^2-a^2\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow a^2\left(a^2-b^2\right)+b^2\left(b^2-c^2\right)+c^2\left(c^2-a^2\right)\ge0\)

\(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Đặt \(\left(a^2;b^2;c^2\right)\rightarrow\left(x;y;z\right)\).Ta cần chứng minh:

\(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)

tth_new
25 tháng 4 2019 lúc 9:06

Dấu "=" xảy ra khi x = y = z \(\Leftrightarrow a^2=b^2=c^2\Leftrightarrow a=b=c\)