1.Tìm x,y biết:
x/4=y/5 và x^2+y^2=9
2.Tìm GTNN của F=(y^2+3)+/x+y-1/+6
bài 1
a,tìm x biết 2^x =8
b, tìm x biết
căn x =4
căn x=81
(x+1)^2=36
căn x=-3
c, cho x =5 ; y =15 thì hệ số tỉ lệ của y và x làbao nhiều nếu
1, x và y là 2 đại lượng TLT
2, x và y là 2 đại lượng TLN
d, cho hàm số y=f(x) =3x^2 -5. tính f(2); f(-2); f(1/5)
Cho hai số thực x và y thỏa mãn y-x=1 tìm gtnn của A=x^2+y^2
\(y-x=1\Rightarrow x=y-1\)
\(\Rightarrow x^2+y^2=\left(y-1\right)^2+y^2\)
\(=y^2-2y+1+y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{2}\right)\)
\(=2\left(y^2-2y\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)
Dấu"=" xảy ra khi \(2\left(y-\frac{1}{2}\right)^2=0\Rightarrow y=\frac{1}{2}\)
Vì \(y-x=1\)nên
\(\Rightarrow\frac{1}{2}-x=1\Rightarrow x=-\frac{1}{2}\)
Vậy \(Min_A=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{1}{2}\)
Bài 12: Cho x và y tỉ lệ thuận và khi x = 5 thì y = – 2.
a) Tìm giá trị của y ứng với x = – 1.
b) Tìm giá trị của x ứng với y = 3.
a: k=-2/5
=>y=-2/5x
Khi x=-1 thì y=2/5
b: Khi y=3 thì -2/5x=3
hay x=3:(-2/5)=-3x5/2=-15/2
1. Cho d: y = (\(^{m^2}\) + 2m)x + m + 1 . Tìm m để:
a, d // d1: y = (m + 6)x - 2
b, d ⊥ d2: y = \(\dfrac{-1}{3}\)x - 3
c, d ≡ d3: y = -\(^{m^2}\).x + 1
2. Tìm d // d1: y = \(\dfrac{-1}{2}\)x + 1 và d đi qua giao điểm của d1: y = 4x - 3 và d2: y = -x + 1
Bài 1:
b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)
\(\Leftrightarrow m^2+2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)
tìm x,y,z biết x/2=y/3,y/4=z/5 và x-2y+3z=92
Vì x/2 = y/3 nên x/8=y/12 ( nhân hai vế với 1/4) (1)
Vì y /4 =z/5 nên y/12 = z/15 ( nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra x/8=y/12=z/15
Theo tính chất dãy tỉ số bằng nhau
x/8=y/12=z/15= (x-2y+3z)/(8-2.12+3.15) = 92/ 29
suy ra x = (92.8):29 ; y = (92.12): 29; z = (92. 15) :29
tìm x,y,z biết x/2=y/3,y/4=z/5 và x-2y+3z=92
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}=\frac{x-2y+3z}{8-24+45}=\frac{92}{29}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{92}{29}\\\frac{y}{12}=\frac{92}{29}\\\frac{z}{15}=\frac{92}{29}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{736}{29}\\y=\frac{1104}{29}\\z=\frac{1380}{29}\end{cases}}}\)
cho x và y là hai số thỏa mãn : x ≥ 0, y ≥ 0, 2x + 3y ≤ 6 và 2x + y ≤ 4
tìm GTNN và GTLN của biểu thức K=x2 - 2x - y
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)