Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
zZz Phan Cả Phát zZz
Xem chi tiết
kaitovskudo
26 tháng 11 2016 lúc 22:03

a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)

\(=\frac{x^2+4x+4}{x^2}\)

\(\left(\frac{x+2}{x}\right)^2\)

=>phép chia = 1 với mọi x # 0 và x#-1

b)Cm tương tự

Nguyễn Tiến Bộ
26 tháng 11 2016 lúc 16:43

khó quá

Trần Hoàng Việt
5 tháng 11 2017 lúc 9:54

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
19 tháng 9 2023 lúc 20:31

a)

\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A =  - 1\end{array}\)

b)

\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A =  - 1 + 0 + 0 =  - 1\end{array}\)

câu hỏi chọn lọc
Xem chi tiết
câu hỏi chọn lọc
16 tháng 6 2019 lúc 22:20

Câu 8 :

\(N=\left(\frac{x-1}{\left(x-1\right)^2+x}-\frac{2}{x-2}\right):\left(\frac{\left(x-1\right)^4+2}{\left(x-1\right)^3-1}-x+1\right)\)

Đặt \(x-1=a\)

\(N=\left(\frac{a}{a^2+x}-\frac{2}{a-1}\right):\left(\frac{a^4+2}{a^3-1}-a\right)\)

\(N=\frac{a\left(a-1\right)-2\left(a^2+x\right)}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a\left(a^3-1\right)}{a^3-1}\)

\(N=\frac{a^2-a-2a^2-2x}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a^4+a}{a^3-1}\)

\(N=\frac{-a^2-a-2x}{\left(a^2+x\right)\left(a-1\right)}\cdot\frac{\left(a-1\right)\left(a^2+a+1\right)}{2+a}\)

\(N=\frac{-\left(a^2+a+2x\right)\left(a^2+a+1\right)}{\left(a^2+x\right)\left(2+a\right)}\)

\(N=\frac{-\left[\left(x-1\right)^2+x-1+2x\right]\left[\left(x-1\right)^2+x-1+1\right]}{\left[\left(x-1\right)^2+x\right]\left(2+x-1\right)}\)

\(N=\frac{-\left(x^2+x\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}\)

\(N=\frac{-x\left(x+1\right)}{x+1}\)

\(N=-x\)( đpcm )

câu hỏi chọn lọc
16 tháng 6 2019 lúc 22:24

Câu 9 : Tìm giá trị nhỏ nhất của biểu thức :

\(P=\frac{x^2}{x+4}\cdot\left(\frac{x^2+16}{x}+8\right)+9\)

Bài làm :

\(P=\frac{x^2}{x+4}\cdot\frac{x^2+8x+16}{x}+9\)

\(P=\frac{x^2\left(x+4\right)^2}{x\left(x+4\right)}+9\)

\(P=x\left(x+4\right)+9\)

\(P=x^2+4x+9\)

\(P=\left(x+2\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-2\)

câu hỏi chọn lọc
16 tháng 6 2019 lúc 22:32

Bài 10 : Tìm GTLN

\(Q=\left(\frac{x^3+8}{x^3-8}\cdot\frac{4x^2+8x+16}{x^2-4}-\frac{4x}{x-2}\right):\frac{-16}{x^4-6x^3+12x^2-8x}\)

\(Q=\left[\frac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\cdot\frac{4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right]:\frac{-16}{x\left(x^3-6x^2+12x-8\right)}\)

\(Q=\left(\frac{4\left(x^2-2x+4\right)}{\left(x-2\right)^2}-\frac{4x\left(x-2\right)}{\left(x-2\right)^2}\right):\frac{-16}{x\left[x^2\left(x-2\right)-4x\left(x-2\right)+4\left(x-2\right)\right]}\)

\(Q=\frac{4x^2-8x+16-4x^2+8x}{\left(x-2\right)^2}:\frac{-16}{x\left(x-2\right)\left(x^2-4x+4\right)}\)

\(Q=\frac{16}{\left(x-2\right)^2}\cdot\frac{-x\left(x-2\right)\left(x-2\right)^2}{16}\)

\(Q=-x\left(x-2\right)\)

\(Q=-x^2+2x\)

\(Q=-x^2+2x-1+1\)

\(Q=1-\left(x-1\right)^2\le1\forall x\)

Dấu "=" \(\Leftrightarrow x=1\)

Vậy....

Trương Bảo Hân
Xem chi tiết
Đỗ Đức Đạt
Xem chi tiết
Kudo Shinichi
6 tháng 2 2017 lúc 21:36

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot.....\cdot\frac{2014}{2013}\)

\(=\frac{2}{2013}\)

Trương Trọng Tiến
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
alibaba nguyễn
20 tháng 11 2016 lúc 9:12

a/ Ta có 

\(K^4+\frac{1}{4}=K^4+K^2+\frac{1}{4}-K^2=\left(K^2+\frac{1}{2}\right)^2-K^2=\left(K^2+K+\frac{1}{2}\right)\left(K^2-K+\frac{1}{2}\right)\)

Ta lại có 

\(K^2+K+\frac{1}{2}=\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\)

\(\Rightarrow K^4+\frac{1}{4}=\left(K^2-K+\frac{1}{2}\right)\left(\left(K+1\right)^2-\left(K+1\right)+\frac{1}{2}\right)\)

Áp dụng vào bài toán ta được

\(=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)\(1S=\frac{\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)\left(5^2-5+0,5\right)...\left(100^2-100+0,5\right)\left(101^2-101+0,5\right)}{\left(1^2-1+0,5\right)\left(2^2-2+0,5\right)\left(3^2-3+0,5\right)\left(4^2-4+0,5\right)...\left(99^2-99+0,5\right)\left(100^2-100+0,5\right)}\)

alibaba nguyễn
20 tháng 11 2016 lúc 6:07

b/

\(\frac{3\left(x+y\right)}{3\sqrt{x\left(4x+5y\right)}+3\sqrt{y\left(4y+5x\right)}}\)

\(\ge\frac{3\left(x+y\right)}{\frac{9x+4x+5y}{2}+\frac{9y+4y+5x}{2}}\)

\(=\frac{1}{3}\)

Dấu = xảy ra khi x = y

alibaba nguyễn
20 tháng 11 2016 lúc 9:15

Bấm sao mà nói đẩy đáp số lên trên mất rồi

\(\Rightarrow1S=\frac{101^2-101+0,5}{1^2-1+0,5}=20201\)

Dương Chí Thắng
Xem chi tiết
Trung Nguyen
Xem chi tiết