Tìm các số nguyên x ,y sao cho
x-2xy+2y\(=\)-4
Tìm tất cả các cặp số nguyên x, y sao cho: 2xy + x-2y=4
Ta có: 2xy + x - 2y = 4
=> 2y(x - 1) + x = 4
=> 2y(x - 1) + x - 1 = 3
=> 2y(x - 1) + (x - 1) = 3
=> (x - 1).(2y + 1) = 3
=> x-1 và 2y+1 là Ư(3)={-3;-1;1;3}
Ta có bảng:
x - 1 | -1 | -3 | 1 | 3 |
2y + 1 | -3 | - 1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -2 | -1 | 1 | 0 |
x(2y+1)-(2y+1)= 4-1
(x-1)(2y+1)=3
Bạn tự làm tiếp nhé.
Ta có :
\(2xy+x-2y=4\)
\(\Rightarrow x\left(2y+1\right)-2y-1=3\)
\(\Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(2y+1\right)=3\)
Do \(x;y\in Z\)
\(\Rightarrow x-1;2y+1\in Z\)
Mà \(x-1;2y+1\inƯ\left(3\right)\)
\(\Rightarrow x-1;2y+1\in\left\{\pm1;\pm3\right\}\)
Ta có bảng sau :
\(x-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(2y+1\) | \(3\) | \(1\) | \(-3\) | \(-1\) |
\(x\) | \(2\) | \(4\) | \(0\) | \(-2\) |
\(y\) | \(1\) | \(0\) | \(-2\) | \(-1\) |
Vậy ...
Tìm tất cả các cặp số nguyên x,y sao cho 2xy + x - 2y = 4
Ta có :
2xy + x - 2y = 4
\(\Rightarrow\) 2y ( x - 1 ) + x = 4
\(\Rightarrow\) 2y ( x - 1 ) + x - 1 = 3
\(\Rightarrow\) 2y ( x - 1 ) + ( x - 1 ) = 3
\(\Rightarrow\) ( x - 1 ) . ( 2y + 1 ) = 3
\(\Rightarrow\) x - 1 và 2y + 1 là Ư(3) = { - 3 ; - 1 ; 1 ; 3 }
Ta có bảng :
x - 1 | - 1 | - 3 | 1 | 3 |
2y + 1 | - 3 | - 1 | 3 | 1 |
x | 0 | - 2 | 2 | 4 |
y | - 2 | - 1 | 1 | 0 |
Vậy ...
2xy+x-2y=4
x(2y+1)-2y=4
x(2y+1)-2y-1=3
x(2y+1)-(2y+1)=3
(x-1)(2y+1)=3
Vì x;y là số nguyên => x-1;2y+1 là số nguyên
=> x-1;2y+1 Ư(3)
Ta có bảng:
x-1 | 1 | 3 | -3 | -1 |
2y+1 | 3 | 1 | -1 | -3 |
x | 2 | 4 | -2 | 0 |
y | 1 | 0 | -1 | -2 |
Vậy cặp số nguyên (x;y) cần tìm là: (2;1) ; (4;0) ; (-2;-1) ; (0;-2).
Ta có : 2xy + x - 2y = 4
2y(x-1) + x - 1 = 3
( x - 1 ) . ( 2y + 1 ) = 3 = 1 . 3
Ta có bảng sau
x - 1 | 1 | 3 | -1 | -3 |
2y + 1 | 3 | 1 | -3 | -1 |
x | 2 | 4 | 0 | -2 |
y | 1 | 0 | -2 | -1 |
Vậy các cặp giá trị ( x ; y ) cần tìm là ( 2 ; 1 ) ; ( 4 ; 0 ) ; ( 0 ; -2 ) ; ( -2 ; -1 )
tìm các cặp x,y nguyên sao cho
2xy+x-2y=4
\(2xy+x-2y=4\\\Rightarrow (2xy+x)-2y-1=3\\\Rightarrow x(2y+1)-(2y+1)=3\\\Rightarrow (2y+1)(x-1)=3\)
Ta có: \(x,y\) nguyên
\(\Rightarrow2y+1;x-1\) là các ước của \(3\)
Mặt khác: \(2y+1\) là số lẻ với mọi \(y\) nguyên
Ta có bảng:
x - 1 | 3 | -3 |
2y + 1 | 1 | -1 |
x | 4 | -2 |
y | 0 | -1 |
(thoả mãn điều kiện \(x,y\) nguyên)
Vậy: ...
#\(Toru\)
Tìm tất cả các cặp số nguyên x,y sao cho 2xy + x - 2y = 4
\(\Rightarrow x\left(2y+1\right)-\left(2y+1\right)+1=4+1=5\)
...... tự lm
Tìm các số nguyên x sao chox2+2x+6:x+4
\(x^2+2x+6\)\(⋮\)\(x+4\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(x+4\right)+14\)\(⋮\)\(x+4\)
Ta thấy \(\left(x-2\right)\left(x+4\right)\)\(⋮\)\(x+4\)
nên \(14\)\(⋮\)\(x+4\)
hay \(x+4\)\(\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7\right\}\)
Ta lập bảng sau:
\(x+4\) \(-7\) \(-2\) \(-1\) \(1\) \(2\) \(7\)
\(x\) \(-11\) \(-9\) \(-5\) \(-3\) \(-2\) \(3\)
Vậy....
Câu 1: Chứng minh rằng: Nếu p và p2+2 là các số nguyên tố thì p3+2 cũng là số nguyên tố
Câu 2: Tìm x,y nguyên sao cho 2xy + x - 2y = 4
\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)
Ta có bảng:
x-1 | -1 | -3 | 1 | 3 |
2y+1 | -3 | -1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -2 | -1 | 1 | 0 |
Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)
Tìm tất cả các cặp số nguyên (x;y) sao cho: x+2xy+2y+6=0
Tìm tất cả các cặp số nguyên (x;y) sao cho: x+2xy+2y+6=0
x+2xy+2y+6=0
x . (1 + 2y) + 2y + 6 = 0
x . (1 + 2y) + 2y + 1 = 5
(1 + 2y) . (x + 1) = 5
Phần còn lại làm đc nốt chưa
tìm các số nguyên x,y sao cho x^2 - 2xy +2y^2 - 4x + 7<0