Tìm x,y biết
5x=6y và x-y=18
1) Tìm x, y, z biết:
a) 5x=6y=20z và x-y-z=3
b) 6/11x=9/2. y=18/5. z và x+y+z= -120
a)5x=6y=20z=>\(\frac{x}{12}=\frac{y}{10}=\frac{z}{3}\) và x-y-z=3
Áp dụng t/c của dãy tỉ số bàng nhau ta có:
\(\frac{x}{12}=\frac{y}{10}=\frac{z}{3}\)=\(\frac{x-y-z}{12-10-3}=\frac{3}{-1}=-3\)
=>x=(-3).12=-36
y=(-3).10=-30
z=(-3).3=-9
b)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)và x+y+z=-120
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{33+4+5}=-\frac{120}{42}=-\frac{20}{7}\)
=>x=-30/7 . 33 =-990/7
y=-20/7 . 4=-80/7
z=-20/7 . 5=-100/7
a) Theo đề được: \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{20}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{20}}=\frac{x-y-z}{\frac{1}{5}-\frac{1}{6}-\frac{1}{20}}=\frac{3}{-\frac{1}{60}}=-180\)
\(\frac{x}{\frac{1}{5}}=5x=-180\Rightarrow x=-180:5=-36\)
6y=-180 => y= - 30
20z = -180 => z = -9
b) Đề sai
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Tìm x , y , x biết 1 + 2y / 18 = 1 + 4y / 24 = 1 + 6y / 6x
Ta có \(\frac{1+2y}{18}\)=\(\frac{1+4y}{24}\)
\(\Rightarrow\)(1+2y)24=(1+4y)18
\(\Rightarrow\)24+48y=18+72y
\(\Rightarrow\)24-18=72y-48y
\(\Rightarrow\)6=24y
\(\Rightarrow\)y=\(\frac{6}{24}\)
\(\Rightarrow\)y=\(\frac{1}{4}\)
Thay y=\(\frac{1}{4}\) vào đề ta có:
1 + 2\(\frac{1}{4}\) / 18 = 1 + 4\(\frac{1}{4}\) / 24 = 1 + 6\(\frac{1}{4}\) / 6x
=>\(\frac{1}{12}\)=\(\frac{\frac{5}{2}}{\frac{6}{x}}\)
=>12.\(\frac{5}{2}\)=6x
=>30=6x
=>x=5
Vậy x=5;y=\(\frac{1}{4}\)
ta co : 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=>y=1/4
thay y thanh 1/4 vao de bai ta co :
1+1/2/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=>12/(5/2)=6x
=>30=6x/x=5
vay x=5 va y=1/4
Ta có 1+2y181+2y18=1+4y241+4y24
⇒⇒(1+2y)24=(1+4y)18
⇒⇒24+48y=18+72y
⇒⇒24-18=72y-48y
⇒⇒6=24y
⇒⇒y=624624
⇒⇒y=1414
Thay y=1414 vào đề ta có:
1 + 21414 / 18 = 1 + 41414 / 24 = 1 + 61414 / 6x
=>112112=526x526x
=>12.5252=6x
=>30=6x
=>x=5
Vậy x=5;y=14
1. Giải phương trình nghiệm nguyên
a) \(x^2+4x+2018^{10}\)
b) \(x^2+4x+\left(y-1\right)^2=21\)
c) \(x^2+3\left(y-1\right)^2=2021\)
d) \(\left(3x-1\right)^{2020}-18\left(y-2\right)^{2019}=2019^{2020}\)
2. Tìm x,y ∈ Z
a) \(x^2-y^2+6y=56\)
b) \(x^2-4x+9y^2-6y=11\)
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
1a. Đề lỗi
1b.
PT $\Leftrightarrow (x+2)^2+(y-1)^2=25$
$\Leftrightarrow (x+2)^2=25-(y-1)^2\leq 25$
$(x+2)^2$ là scp không vượt quá $25$ nên có thể nhận các giá trị $0,1,4,9,16,25$
Nếu $(x+2)^2=0\Rightarrow (y-1)^2=25$
$\Rightarrow (x,y)=(-2, 6), (-2, -4)$
Nếu $(x+2)^2=1\Rightarrow (y-1)^2=24$ không là scp (loại)
Nếu $(x+2)^2=4\Rightarrow (y-1)^2=21$ không là scp (loại)
Nếu $(x+2)^2=9\Rightarrow (y-1)^2=16$
$\Rightarrow (x,y)=(1, 5), (1, -3), (-5,5), (-5, -3)$
Nếu $(x+2)^2=25\Rightarrow (y-1)^2=0$
$\Rightarrow (x,y)=(3, 1), (-7, 1)$
1c.
Vì $x^2$ là scp nên $x^2\equiv 0,1\pmod 3$
$3(y-1)^2\equiv 0\pmod 3$
$\Rightarrow x^2+3(y-1)^2\equiv 0,1\pmod 3$
Mà $2021\equiv 2\pmod 3$
Do đó pt $x^2+3(y-1)^2=2021$ vô nghiệm
1d.
Ta thấy:
$(3x-1)^{2020}$ là scp không chia hết cho $3$ nên $(3x-1)^{2020}\equiv 1\pmod 3$
$18(y-2)^{2019}\equiv 0\pmod 3$
$\Rightarrow (3x-1)^{2020}+18(y-2)^{2019}\equiv 1\pmod 3$
Mà $2019^{2020}\equiv 0\pmod 3$
Do đó pt vô nghiệm.
Y+Z+1/X = X+Y+2/Y =X+Y-3=1/X+Y+Z
2. TÌM X BT
1+2Y/18 = 1+4Y/24 = 1+6Y/6X
tìm x biết
5x-13=17
\(\Rightarrow5x=30\)
\(\Rightarrow x=6\)
5x-13=17
5x=13+17
5x= 30
x=30:5
x=6.
Vậy x=6
a) tìm x,y biết :
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
b) tìm x,y biết : x + y = x : y = 3 . ( x - y )
Giup mình
A ) ĐK: x#0
Ta có:
(1) 1+2y/18 = 1+4y/24
=> 24 + 48y = 18 + 72y
<=> y=1/4
(2) 1+4y/24=1+6y/6x
Thay y=1/4 vào (2) ta tìm đc x=5 (thỏa)
B ) x+y=3(x−y)=x:y
→x+y=3x−3y
→4y=2x
→x:y=4:2=2
→x+y=2
Mà x=2y nên
2y+y=3y=2
→y=2/3
→x=2−2/3=4/3
Chú ý : dấu / nghĩa là phần
Nếu mình đúng thì các bạn k mình nhé
a) \(\frac{1+2y}{18}=\frac{1+4y}{24}\Rightarrow24+48y=18+72y\Rightarrow6=24y\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\Rightarrow\frac{1+4.\frac{1}{4}}{24}=\frac{1+6.\frac{1}{4}}{6x}\Rightarrow\frac{2}{24}=\frac{\frac{5}{2}}{6x}\Rightarrow12x=60\Rightarrow x=5\)
b) \(x+y=3\left(x-y\right)\Rightarrow x+y=3x-3y\Rightarrow4y=2x\Rightarrow x=2y\)
\(x+y=\frac{x}{y}\Rightarrow2y+y=\frac{2y}{y}\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\Rightarrow x=2y=\frac{4}{3}\)
\(\)
a) \(\frac{1+2y}{18}=\frac{1+4y}{24}\) => (1+2y).24=18.(1+4y) => 24+48y=18+72y => y=\(\frac{1}{4}\)
=> \(\frac{1+6y}{6x}=\frac{1+6\cdot\frac{1}{4}}{6x}=\frac{\frac{5}{2}}{6x}=\frac{1+2\cdot\frac{1}{4}}{18}=\frac{1}{12}\)=> x= \(\frac{\frac{5}{2}\cdot12}{6}=5\)
b) x+y=3.(x-y) => x+y=3x-3y =>2x=4y => x/y=2 => x+y=3.(x-y)=2 => x-y=2/3
=> x=4/3; y=2/3
Tìm x,y:
1+2y:18=1+4y:24=1+6y:(6x)
Tìm x,y biết
a,x+2y/18=1+4y/24=1+6y/6x
ta co : 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=>y=1/4
thay y thanh 1/4 vao de bai ta co :
1+1/2/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=>12/(5/2)=6x
=>30=6x/x=5
vay x=5 va y=1/4
tìm x biết
5x + 5x^2 = 43x^3
\(5x+5x^2=43x^3\\ \Rightarrow43x^3-5x^2-5x=0\\ \Rightarrow x\left(43x^2-5x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\43x^2-5x-5=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=25+4.5.43=885\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5+\sqrt{885}}{86}\\x=\dfrac{5-\sqrt{885}}{86}\end{matrix}\right.\)