Tìm các số nguyên dương n thỏa mãn: 8\(^n\) − 1 là một số nguyên tố
Tìm các số nguyên dương n thỏa mãn: n\(^2\) + 2n − 8 là một số nguyên tố
Ta có n2 + 2n - 8 = (n + 4)(n - 2)
Vì n > 0 => n + 4 > 0
=> Để n2 + 2n - 8 là số nguyên tố
thì n - 2 = 1 => n = 3
Thử lại 32 + 2.3 - 8 = 7 (đúng)
Vậy n = 3 thì n2 + 2n - 8 là số nguyên tố
Tìm tất cả các số nguyên dương n thỏa mãn n+1 và 3n+6 là các số lập phương,đồng thời 2n+5 là số nguyên tố.
Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương
\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)
\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)
Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:
\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.
Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)
\(\Rightarrow3y^2+3y+1=2n+5\)
Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:
\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)
Vì nguyên dương nên nhận y=2--->n=7
tìm các số nguyên dương n(n>1)thỏa mãn với mọi số nguyên dương x nguyên tố cùng nhau với n thì x^2 - 1 chia hết cho n
Tìm các số nguyên dương n thỏa mãn n4 + 2n là số nguyên tố
tìm tất cả số nguyên dương n thỏa mãn n5+n4+1 là số nguyên tố
tìm tất cả số nguyên dương n thỏa mãn n5+n4+1 là số nguyên tố
Ta có: \(n^5+n^4+1\)
\(=n^5-n^3+n^2+n^4-n^2+n+n^3-n+1\)
\(=n^2\left(n^3-n+1\right)+n\left(n^3-n+1\right)+\left(n^3-n+1\right)\)
\(=\left(n^3-n+1\right)\left(n^2+n+1\right)\)
Do \(n^5+n^4+1\) là số nguyên tố nên: \(\left[{}\begin{matrix}n^3-n+1=1\\n^2+n+1=1\end{matrix}\right.\) trong hai số phải có 1 số là 1 và số còn lại là số nguyên tố:
TH1: \(n^3-n+1=1\)
\(\Leftrightarrow n^3-n=0\)
\(\Leftrightarrow n\left(n^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=1\\n=-1\end{matrix}\right.\)
Với
\(n=0\Rightarrow0^5+0^4+1=1\) (loại)
\(n=1\Rightarrow1^5+1^4+1=3\) (nhận)
\(n=-1\Rightarrow\left(-1\right)^5+\left(-1\right)^4+1=1\) (loại)
TH1: \(n^2+n+1=1\)
\(\Leftrightarrow n^2+n=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-1\end{matrix}\right.\left(\text{loại}\right)\)
Vậy \(n=1\) là số thỏa mãn để \(n^5+n^4+1\) là số nguyên tố
Tìm tất cả các số nguyên dương thỏa mãn 2n2+3n+1 là số chính phương và n+5 là số nguyên tố
16.cho các số nguyên dương m,n thỏa mãn: m+n+1 là ước nguyên tố của 2.(m^2+n^2)-1. Cm m.n là một số chính phương
Ta có: \(2\left(m^2+n^2\right)-1=2\left(m^2+n^2+2mn\right)-1-4mn=2\left(m+n\right)^2-1-4mn\)
\(=2\left[\left(m+n\right)^2-1\right]-4mn+1=2\left(m+n-1\right)\left(m+n+1\right)-4mn+1-4m^2-4m+4m^2+4m\)
\(=2\left(m+n+1\right)\left(-m+n-1\right)+\left(2m+1\right)^2\)
Suy ra \(\left(2m+1\right)^2⋮\left(m+n+1\right)\)mà \(m+n+1\)nguyên tố nên \(2m+1⋮m+n+1\)
do \(m,n\)nguyên dương suy ra \(2m+1\ge m+n+1\Leftrightarrow m\ge n\).
Một cách tương tự ta cũng suy ra được \(n\ge m\).
Do đó \(m=n\).
Khi đó \(mn=m^2\)là một số chính phương.
JBMO 2016 : Tìm số nguyên dương n nhỏ nhất thỏa mãn n là ước của mọi số nguyên dương p^6-1 với p là số nguyên tố lớn hơn 7.