Cho a và b là hai số tự nhiên. Biết a chia cho 3 thì dư 1 ; b chia cho 3 thì dư 2. Chứng minh rằng ab chia cho 3 dư 2.
Bài này mình đang cần gấp. Mong các bạn giúp đỡ
1. Cho hai số tự nhiên a và b, biết a chia cho 6 dư 2 và b chia cho 6 dư 3. Chứng minh rằng ab chia hết cho 6
2. Cho a và b là hai số tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3. Chứng minh rằng ab chia cho 5 dư 1
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Câu 1 : Khi chia hai số tự nhiên a và b cho 3 thì cùng có số dư là r. Chứng minh rằng (a - b) chia hết cho 3.
Câu 2 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 7 thì có số dư là 5. Chứng minh rằng (a - b) chia hết cho 7.
Câu 3 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 2 thì có số dư là 1. Chứng minh rằng (a - b) chia hết cho 2
"Các bạn có thể giải 1 trong 3 câu hoặc giải tất cả tùy các bạn !!! Ai nhanh mk tik cho !!"
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 2 và b chia cho 3 dư 1. Tích a.b chia cho 3 có số dư là:
A. –1
B. 0
C. 1
D. 2
a, Tìm hai số tự nhiên a và b biết tổng BCNN và ƯCLN của chúng là 15
b, Tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho 9 dư 5, chia cho 7 dư 4 và chia 5 thì dư 3
Cho ab là số tự nhiên có hai chữ số.
a, Biết ab chia hết cho 3 ; chia cho 5 dư 1. Tìm các chữ số a, b.
b, Biết rằng nếu lấy số ab chia cho số ba thì được thương là 3 và số dư là 13. Tìm a, b.
số đó là :
3x3+13=sai đề là cái chắc
Biết rằng số tự nhiên a chia cho số tự nhiên n thì được thương là 3 dư 2.số tự nhiên b chia cho số tự nhiên n thì được thương là 6 dư 4.Chứng tỏ tổng a và b chia hết cho 3
Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1, b chia 3 dư 2. Chứng minh ab chia 3 dư 2
a chia 3 dư 1 nên a=3k+1
b chia 3 dư 2 nên b=3e+2
a*b=(3k+1)(3e+2)
=9ke+6k+3e+2
=3(3k2+2k+e)+2 chia 3 dư 2
Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2.
Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)
b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)
a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2
Vì 9 ⋮ 3 nên 9qk ⋮ 3
Vì 6 ⋮ 3 nên 6q ⋮ 3
Vì 3⋮ 3 nên 3k ⋮ 3
Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)
Bài 1: Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Hỏi tích A = a.b chia cho 3 dư bao nhiêu ?
Bài 2: Chứng minh rằng với mọi nÎ Z thì
a) n.(n + 5) - (n - 3).(n + 2) chia hết cho 6.
b) (n - 1).(n + 1) - (n - 7).( n - 5) chia hết cho 12.
Bài 3: Xác định các hệ số a; b; c biết
a) (2x - 5).(3x + b) = ax2 + x + c
b) (ax + b).(x2 - x - 1) = ax3 + cx2 - 1
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)