hãy chứng minh 3x^2 -x+2 > 0 toán 8
giúp mình với
cảm ơn nhiều
chứng minh: (x-1)(x-3)(x-4)(x-6)+9\(\ge\)0
Hãy giúp mình giải bài toán này nhé!!! Cảm ơn bạn nhiều!!!
\(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)
\(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\) [ Nhân ( x - 1) với ( x - 6 ) và ( x - 3 ) với ( x - 4 ) ]
Đặt \(x^2-7x+9=y\) ta được :
\(\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)
\(\Leftrightarrow\left(y-3\right)\left(y+3\right)+9\ge0\)
\(\Leftrightarrow y^2-9+9\ge0\)
\(\Leftrightarrow y^2\ge0\)( điều hiển nhiên ) \(\Rightarrow dpcm\)
tk cho mk nka !!!
Tìm nghiệm của pt (x2+3x+2)(x2+3x+3)-2=0... Giúp mình đi mình cảm ơn nhiều....Bài toán khó quá mấy ngày nay mò hoài ko ra!!! =.="
Tìm nghiệm của pt (x2+3x+2)(x2+3x+3)-2=0... Giúp mình đi mình cảm ơn nhiều!!!....Bài toán khó quá mấy ngày nay mò hoài ko ra!!! =.="
Cậu hãy đặt y = x2 + 3x + 2
-> y(y+1)-2=0
-> y=1 -> x= ...
hoặc y=-2 -> x=...
Bạn tự giải tiếp nha
Mình làm đc khúc đó ròi khúc sau thì thế vào tính nhưng không ra nghiệm!!!! Bó tay luôn
ta đặt : t= x^2+3x+2
suy ra ta có phương trình :
t(t+1)-2=0
<=>t^2+t-2=0
<=>t^2-t+2t-2=0
<=>t(t-1)+2(t-1)=0
<=>(t-1)(t+2)=0
Xét t-1=0
=>x^2+3x+1=0
<=>(x^2+3x+9/4)-5/4=0
<=>(x+3/2)^2-5/4=0
<=>(x+((3-Sqrt(5))/2))(x+((3+Sqrt(5))/2))=0
=>x=(-3-Sqrt(5))/2hoặc x=(-3-Sqrt(5))/2
Xét t+2=0
=>x^2+3x+4=0
do: x^2+3x+4>0=>t+2=0 (loại)
vậy x=(-3-Sqrt(5))/2 hoặc x=(-3+ Sqrt(5))/2
Chứng minh rằng biểu thức sau luôn có giá trị âm :
A=\(\frac{-5x}{x^2-3x+10}\)
Giúp mình làm bài toán này nhé!!! Cảm ơn nhiều!!!
Ta có : A = \(\frac{-5x}{x^2-3x+\frac{9}{4}+\frac{31}{4}}\)= \(\frac{-5x}{\left(x-\frac{3}{2}\right)^2+\frac{31}{4}}\)Vì \(\left(x-\frac{3}{2}\right)^2\)>0 hoặc =0 , khi công thêm \(\frac{31}{4}\)thì Mẫu số luôn lớ hơn hoặc bằng 0. Mà -5x luôn bé hơn hoặc bằng 0
Vì vậy biểu thức A luôn âm
Tìm x:
a) (x+2) (2x-1) +1 = 4x2
b)x3 + 2x2 + 3x = 0
giúp mình với Toán 8 cảm ơn nhiều
\(x^3+2x^2+3x=0\)\(\Leftrightarrow x.\frac{x^3+2x^2+3x}{x}=0\)
\(\Leftrightarrow x\left(x^2+2x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+2x+3=0\end{cases}}\)
Ta sẽ c/m \(x^2+2x+3=0\) vô nghiệm.Thật vậy:
\(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)
Từ đó suy ra \(x^2+2x+3=0\) vô nghiệm.
Vậy : x = 0
\(\left(x+2\right)\left(2x-1\right)+1=4x^2\)
\(2x^2-x+4x-2+1=4x^2\)
\(\Rightarrow2x^2-3x+1=0\)
\(2x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
ý còn lại tham khảo bài tth
Cho a,b>0.Chứng minh \(\dfrac{a^2+b^2}{2}\ge ab\)
Gíup mình với ạ, mình cảm ơn nhiều
mk thấy cm \(\dfrac{a^2+b^2}{2}\ge ab\) thì đúng hơn
Sửa đề: \(\dfrac{a^2+b^2}{2}\ge ab\)
Ta có: \(\left(a-b\right)^2\ge0\) với mọi a, b
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge ab\)
Dấu "=" xảy ra khi a=b
Tính:
a) 3/14 x 2
b) 3 x 7/9
c) 4/11 : 2
d) 4 x 5/8
giúp mình giải chi tiết nha^^
Cảm ơn nhiều^^
1, Chứng minh bất đẳng thức:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}\ge3\forall a\ge1\)
2, Giải phương trình:
\(x\left(x^2-3x+3\right)+\sqrt{x+3}=3\)
Mong mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
Bài 1 tính .
a) \(\dfrac{\left(-3\right)^{10}.15^5}{25^3.\left(-9\right)^7}\)
b) 2\(^3\) +3 . (\(\dfrac{1}{9}\))\(^0\) -2\(^{-2}\) . 4 +[ (-2)\(^2\) : \(\dfrac{1}{2}\) ] . 8
Giúp mình với mình cảm ơn
bài 1)
a) \(\dfrac{\left(-3\right)^{10}.15^5}{25^3.\left(-9\right)^7}\)
\(=\dfrac{\left(-3\right)^{10}.\left(3.5\right)^5}{\left(5^2\right)^3.\left(-3.3\right)^7}\)
\(=\dfrac{\left(-3\right)^{10}.3^5.5^5}{5^6.\left(-3\right)^7.3^7}\)
\(=\dfrac{\left(-3\right)^3.1.1}{5.1.3^2}\)
\(=\dfrac{-27.1.1}{5.1.9}\)
\(=\dfrac{-27}{45}\)
\(=\dfrac{-9}{15}\)
b)\(2^3+3.\left(\dfrac{1}{9}\right)^0-2^{-2}.4\left[\left(-2\right)^2:\dfrac{1}{2}\right].8\)
\(=8+3.1-\dfrac{1}{2^2}.4+\left[\left(4:\dfrac{1}{2}\right)\right].8\)
\(=8+3.1-\dfrac{1}{4}.4+\left[4.\dfrac{2}{1}\right].8\)
\(=8+3.1-\dfrac{1}{4}.4+8.8\)
\(=8+3-1+64\)
\(=11-1+64\)
\(=10+64\)
\(=74\)