Tính S=1x2x3+2x3x4+...+98x99x100
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)
\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)
hay \(A=\dfrac{-4949}{19800}\)
Tính tổng :
S=\(\frac{1}{1x2x3}+\frac{1}{2x3x4}+...+\frac{1}{98x99x100}\)
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{98\cdot99\cdot100}\)
\(S=\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+...+\frac{100-98}{98\cdot99\cdot100}\)
\(2S=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{98\cdot99\cdot100}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\)
\(\Rightarrow S=\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\div2=\frac{4949}{19800}\)
Ta có:
Sx3 = 3/1 x ( 1/1x2x3 + 1/2x3x4 + .... + 1/98x99x100 )
Sx3 = 3/1x2x3 + 3/2x3x4 + .... + 3/98x99x100
Sx3 = (1/2 x 1/2x3) + (1/2x3 x 1/3x4) + ... + (1/98x99 + 1/99x100)
S = (1/2 x 1/98x99) :3
S = 1/59400
Mk ko quen vt p/s nên vt thế này cho nhanh sorry
S=(1/2 x 1/89x99):3
S=1/59400
đ/s:.......
vậ x=
1x2x3+2x3x4+3x4x5+...+98x99x100
Đặt A = 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 +....+ 98 x 99 x 100
4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + 4 x 5 x 4 +....+ 98 x 99 x 100 x 4
4A = 1 x 2 x 3 x ( 4 - 0 ) + 2 x 3 x 4 x ( 5 - 1 ) + 4 x 5 x 6 x ( 7 - 3 ) +....+ 98 x 99 x 100 x ( 101 - 97 )
4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + 4 x 5 x 6 x 7 - 3 x 4 x 5 x 6 + .... + 98 x 99 x 100 x 101 - 98 x 99 x 100 x 97
A = 98 x 99 x 100 x 97 / 4
A = 98 x 99 x 25 x 97
1/1x2x3 + 1/2x3x4 + ... + 1/98x99x100
`1/(1.2.3) + 1/(2.3.4) +.....+ 1/(98.99.100)`
`2/(1.2.3) + 2/(2.3.4) + ...+ 2/(98.99.100)`
`1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + ... + 1/(98.99) - 1/(99.100)`
`1/(1.2) - 1/(99.100)`
`1/2 - 1/9900`
= `4949/9900`
Tính tổng
1x2x3+2x3x4+3x4x5+...+98x99x100
Help me!!!
4A=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+.....+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+....+98.99.100.101-97.98.99.100
4A=98.99.100.101
A=(98.99.100.101):4=24497550
Cứ một dãy số thì có 2 thừa số bị gạch nên cuối cùng chỉ còn 1x100
[ 98.99.100.101 - 0.1.2.3]: 4=24497550
F=1x2x3+2x3x4+...+98x99x100
tính tổng của dãy số
Ta có:
\(F=1.2.3+2.3.4+...+98.99.100\)
\(\Rightarrow4F=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+....+98.99.100.\left(101-97\right)\)
\(\Rightarrow4F=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100\)
\(\Rightarrow4F=98.99.100.101\Leftrightarrow F=\frac{98.99.100.101}{4}=24497550\)
1x2x3+2x3x4+3x4x5+...+98x99x100
4a=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+........+98.99.100(101-97)
4a=1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
4a=98.99.100.101
a=(98.99.100.101):4=24497550
tính nhanh : 1/1x2x3 + 1/2x3x4 + 1/3x4x5 + .... + 1/98x99x100
=1/1x2-1/2x3+1/2x3-1/3x4+...+1/98x99-1/99x100
=1/2-1/9900
=4949/9900
Tính nhanh:
1/1x2x3 + 1/2x3x4 + 1/3x4x5 + ... + 1/98x99x100
Đặt A là tên biểu thức
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(2A=\frac{1}{2}-\frac{1}{9900}\)
\(2A=\frac{4949}{9900}\)
\(A=\frac{4949}{9900}:2=\frac{4949}{19800}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\frac{1}{2}.\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\frac{1}{2}.\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}.\frac{4949}{9900}\)
\(=\frac{4949}{19800}\)