Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TIAe
Xem chi tiết
Nguyễn Hồ Nhã Trúc
Xem chi tiết
Nguyễn Minh Quang
19 tháng 2 2022 lúc 17:27

a. ta có : tam giác AHB vuông tại H nên

\(AH^2=AB^2-BH^2=12^2-7,2^2=9,6^2\) Vậy AH =9,6cm

b. Ta có : ABC phải tam giác vuông vì \(AB^2=BH.BC\)

Khách vãng lai đã xóa
Phạm Hà Chi
Xem chi tiết
TIAe
Xem chi tiết
Phạm Nguyễn Thúy Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

ღ๖ۣۜBĭη➻²ƙ⁸ღ
Xem chi tiết
Akai Haruma
25 tháng 2 2021 lúc 16:50

Lời giải:

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)

$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)

 

Akai Haruma
25 tháng 2 2021 lúc 16:51

Hình vẽ:

undefined

Phạm Hoàng Tiến
Xem chi tiết
Gia Huy
20 tháng 6 2023 lúc 7:19

Áp dụng hệ thức lượng vào tam giác vuông ABC vuông tại A, đường cao AH có:

\(AH^2=HB.HC\\ \Rightarrow CH=\dfrac{AH^2}{HB}=\dfrac{\left(\dfrac{60}{13}\right)^2}{\left(\dfrac{25}{13}\right)}=\dfrac{144}{13}\left(cm\right)\)

\(BC=BH+HC=\dfrac{25}{13}+\dfrac{144}{13}=13\left(cm\right)\)

\(AB^2=HB.BC\\ \Rightarrow AB=\sqrt{\dfrac{25}{13}.13}=5\left(cm\right)\)

\(AC^2=HC.BC\\ \Rightarrow AC=\sqrt{\dfrac{144}{13}.13}=12\left(cm\right)\)

Bruh
Xem chi tiết
missing you =
10 tháng 8 2021 lúc 17:14

a,

pytago trong tam giác ABH

\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)

dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)

pytago cho tam giác ABC

\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)

\(=>HC=BC-HB=8cm\)

b, pytago cho tam giác AHB

\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)

rồi tính AC , CH làm tương tự bài trên

Phạm Tú Quỳnh
Xem chi tiết