có bao nhiêu số có 6 chữ số khác số 0 và số 9 có dạng abcabc
có bao nhiêu số có 6 chữ số không có số 0 và số 9 có dạng abcabc
có bao nhiêu số có 6 chữ số trong đó không có chữ số 0 và chữ số 9 có dạng abcabc
có 6 số được viết thành abcabc là 123123,234234,345345,456456,567567,678678
và có 6 cách đảo ngược 1 số như 123123,132132,213,231,312,321
vậy ta có 6x6=36 số
có bao nhiêu số có 6 chữ số trong đó không có chữ số 0 và 9 có dạng abcabc?
Vì abc lặp lại
=> Tìm có bao nhiêu số abc thỏa mãn như đè trên
a có 8 cách chọn
b có 8 cách chọn
c có 8 cách chọn
Vậy có: 8 x 8 x 8 = 512 số như vậy
Có bao nhiêu số có sáu chữ số đc tạo thành bởi các số khác 0 và 9 có dạng abcabc
abcabc gồm:Ta chia thành abc/ abc.Điều kiện a khác b khác c và a = a;b = b;c = c
a có thể là:1,2,3,4,5,6,7,8(có 8 số)
b có thể là:7 số vì a đã dùng 1 chữ số
c có thể là:6 số
Tương tự abc kia cũng như vậy
Có tất cả các số như vậy là
8 . 7 . 6 . 8 . 7 . 6 = 336 (số)
Nếu sai thì bạn thông cảm nhé
Từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau, sao cho trong các chữ số đó có mặt chữ số 0 và 1.
A. 2100
B. 4320
C. 36000
D. 42000
Gọi số cần lập
Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có cách.
Theo quy tắc nhân có số thỏa yêu cầu.
Chọn D.
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số tự nhiên:
a) Chẵn và có 4 chữ số khác nhau;
b) Có 7 chữ số khác nhau và phải có mặt 3 chữ số 0, 1, 2 và 3 chữ số này
đứng cạnh nhau
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau, và trong đó có bao nhiêu số mà chữ số đứng sau lớn hơn chữ số đứng trước.
A. 122
B. 126
C. 142
D. 164
Từ các chữ số 0 ; 1; 2 ; 3; 4; 5; 6; 7; 8; 9 hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau và trong đó có bao nhiêu số mà chữ số đứng sau lớn hơn chữ số đứng trước.
A. 4536
B. 2513
C. 126
D. 3913
Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, hỏi lập được bao nhiêu số tự nhiên mỗi số có 4 chữ số khác nhau, và trong đó có bao nhiêu số mà chữ số đứng sau lớn hơn chữ số đứng trước.
A. 122
B. 126
C. 142
D. 164