Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Ngoc Anh
Xem chi tiết
Pham Ngoc Anh
Xem chi tiết
bi bi
Xem chi tiết
Pham Ngoc Anh
Xem chi tiết
Lee Yeong Ji
Xem chi tiết
Nguyễn Thu Phương
Xem chi tiết
Hoàng Lê Bảo Ngọc
7 tháng 7 2016 lúc 22:59

Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(1=\left(x.\sqrt{1-y^2}+y.\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)\)

\(\Rightarrow\left(x^2+y^2\right)\left(2-x^2-y^2\right)\ge1\Leftrightarrow\left(x^2+y^2\right)-2\left(x^2+y^2\right)+1\le0\Leftrightarrow\left(x^2+y^2-1\right)^2\le0\)

\(\Rightarrow\left(x^2+y^2-1\right)^2=0\)\(\Leftrightarrow x^2+y^2=1\)

Nguyễn Vũ Hoàng Anh
Xem chi tiết
Gaming NTA
Xem chi tiết
Trần Đức Long
Xem chi tiết