Cm giúp em với
Cm các biểu thức sau luôn có giá trị âm với mọi x
K= -1/2x^2-x-1
Cm giúp em với
Cm các biểu thức sau luôn có giá trị âm với mọi x
K= -1/2.x^2-x-1
Mong mn hãy ghi lại rõ ràng cách lm ko làm quá tắt
plsss
\(K=\dfrac{-1}{2x^2-x-1}\)
\(=\dfrac{-1}{2x^2-2.\dfrac{1}{2\sqrt{2}}.\sqrt{2}x+\left(\dfrac{1}{2\sqrt{2}}\right)^2+\dfrac{9}{8}}\)
\(=\dfrac{-1}{\left(\sqrt{2}x+\dfrac{1}{2\sqrt{2}}\right)^2+\dfrac{9}{8}}\)
Biểu thức dưới mẫu luôn luôn dương
=> Giá trị của K < 0
Cm giúp em với
Cm các biểu thức sau luôn có giá trị âm với mọi x
K= -1/2.x^2-x-1
Mong mn hãy ghi lại rõ ràng cách lm ko làm quá tắt
plsss
Cm giúp em với
Cm các biểu thức sau luôn có giá trị âm với mọi x
L = -1/3. x^2+2x-5
Xin hãy giải 1 cách chi tiết ạ
Sửa đề: Biểu thức luôn có giá trị dương
Ta có: \(3x^2+2x-5\)
\(=3\left(x^2+\dfrac{2}{3}x-\dfrac{5}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{16}{9}\right)\)
\(=3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}\ge-\dfrac{16}{3}\forall x\)
\(\Leftrightarrow\dfrac{1}{3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}}\le\dfrac{1}{\dfrac{-16}{3}}=\dfrac{-3}{16}\forall x\)
\(\Leftrightarrow\dfrac{-1}{3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}}\ge\dfrac{3}{16}>0\forall x\)(đpcm)
Chứng minh các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến:
a) A= x^2 + x + 1
b) B= 2x^2 + 2x +1
a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)
CTR các biểu thức sau luôn nhận giá trị âm với mọi giá trị của biến : D = - x^2 - y^2 + 2x + 2y - 3
\(D=-x^2-y^2+2x+2y-3\)
\(D=-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-1\)
\(D=-\left(x-1\right)^2-\left(y-1\right)^2-1\)
Ta thấy \(-\left(x-1\right)^2< 0;-\left(y-1\right)^2< 0\forall x;y\). Mà -1 < 0
\(\Rightarrow-\left(x-1\right)^2-\left(y-1\right)^2-1< 0\forall x;y\)\(\Rightarrow D< 0\forall x;y\)(đpcm).
Chứng minh rằng các biểu thức sau luôn nhận giá trị âm với mọi giá trị của biến:
a) (-1/4)x^2 + x - 2
b) (1-2x)(x-1) - 5
c) -3x^2 - 6x - 9
cảm ơn các bạn nhiều
\(-\frac{1}{4}x^2+x-2\)
\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)
\(=-\left(\frac{1}{2}x-1\right)^2-1\)
Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)
Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến
\(\left(1-2x\right)\left(x-1\right)-5\)
\(=x-1-2x^2+2x-5\)
\(=-2x^2+3x-6\)
\(=-2\left(x^2-2\cdot\frac{3}{4}x+\frac{9}{16}\right)-\frac{39}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}\)
Mà \(\left(x-\frac{3}{4}\right)^2\ge0\Rightarrow-2\left(x-\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}< 0\)
Vậy \(\left(1-2x\right)\left(x-1\right)-5\) luôn nhận giá trị âm với mọi giá trị của biến
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
Bài 6.CMR các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) – 9x^2 + 12x – 15
b) –2x^2+4x-9
c) xy-x^ 2 -y 2 -1
d) 17- x^ 2 - 5y^ 2 + 2xy -12y
a) \(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le11< 0\)
b) \(-2x^2+4x-9=-2\left(x^2-2x+1\right)-7=-2\left(x-1\right)^2-7\le-7< 0\)
c) \(xy-x^2-y^2-1=-\dfrac{1}{2}\left(2x^2+2y^2-2xy+2\right)=-\dfrac{1}{2}\left[\left(x-y\right)^2+x^2+y^2+2\right]< 0\)