Chứng minh rằng : 10^2010+5^3 chia hết cho 9
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
Bài 1:
a, Từ 1 đến 1000 có bao nhiêu số chia hết cho 5
b, Tổng 1015+ 8 có chia hết cho 9 và 2 ko?
c, Tổng 102010 + 8 có chia hết cho 9 ko?
d, Tổng 102010+ 14 có chia hết cho 3 và 2 ko?
e, Hiệu 102010 - 4 có chia hết cho 3 ko?
Bài 2:
a, Chứng tỏ rằng ab(a+b) chia hết cho 2 (a,b thuộc N)
b, Chứng minh rằng ab + ba chia hết cho 11
c, Chứng minh aaa luôn chia hết cho 37
d, Chứng minh aaabbb luôn chia hết cho 37
e, Chứng minh ab - ba chia hết cho 9 với a > b
c,\(10^{2010}+8\)
\(=100...0+8\)
\(=100...8\)(tổng các chữ số =9)
\(\Rightarrow10^{2010}+8⋮9\)
1a.
Số nhỏ nhất: 5, số lớn nhất 1000
Vậy có: (1000 - 5): 5 + 1 = 200 (số)
1b. 1015 + 8 = 100...0 + 8 = 100...8 chia hết cho 2; 1 + 8 = 9 nên 1000...8 chia hết cho 9
Số 2.10^2010+7 là hợp số hay nguyên tố? Vì Sao
Số 10^2010-1 là hợp số hay nguyên tố? Vì Sao
Tổng các số tự nhiên từ 1 đến 154 có chia hết cho 2 không?cho 5 không
Cho A=11^9+11^8+...+11+1.Chứng minh rằng A chia hết cho 5
B=2+2^2+2^3+...+2^20.Chứng minh rằng B chia hết cho 5
1.a. chứng minh B = 31 + 32 + 33 + 34 + ............. + 22010 chia hết cho 4 và 13
b. chứng minh C = 51 + 52 + 53 + 54 + ................. + 52010 chia hết cho 6 và 31
2. tìm x,y thuộc N, biết:
a. [ x + 5 ] nhan [ y - 2 ] = 15
b. [ 2x -1 ] nhan [ y - 3 ] = 10
3.
a.từ 1 đến 1000 có bao nhiêu số chia hết cho 5
b. tong 1015 + 8 có chia hết cho 9 và 2 không
c. tong 102010 + 8 có chia hết cho 9 không
d.chứng minh rằng ab + ba chia hết cho 11
e.chứng minh aaa luôn chia hết cho 37
bạn có thể tham khảo từ các câu hỏi tương tự
1.a. chứng minh B = 31 + 32 + 33 + 34 + ............. + 22010 chia hết cho 4 và 13
b. chứng minh C = 51 + 52 + 53 + 54 + ................. + 52010 chia hết cho 6 và 31
2. tìm x,y thuộc N, biết:
a. [ x + 5 ] nhan [ y - 2 ] = 15
b. [ 2x -1 ] nhan [ y - 3 ] = 10
3.
a.từ 1 đến 1000 có bao nhiêu số chia hết cho 5
b. tong 1015 + 8 có chia hết cho 9 và 2 không
c. tong 102010 + 8 có chia hết cho 9 không
d.chứng minh rằng ab + ba chia hết cho 11
e.chứng minh aaa luôn chia hết cho 37
1.a. chứng minh B = 31 + 32 + 33 + 34 + ............. + 22010 chia hết cho 4 và 13
b. chứng minh C = 51 + 52 + 53 + 54 + ................. + 52010 chia hết cho 6 và 31
2. tìm x,y thuộc N, biết:
a. [ x + 5 ] nhan [ y - 2 ] = 15
b. [ 2x -1 ] nhan [ y - 3 ] = 10
3.
a.từ 1 đến 1000 có bao nhiêu số chia hết cho 5
b. tong 1015 + 8 có chia hết cho 9 và 2 không
c. tong 102010 + 8 có chia hết cho 9 không
d.chứng minh rằng ab + ba chia hết cho 11
e.chứng minh aaa luôn chia hết cho 37
1.a. chứng minh B = 31 + 32 + 33 + 34 + ............. + 22010 chia hết cho 4 và 13
b. chứng minh C = 51 + 52 + 53 + 54 + ................. + 52010 chia hết cho 6 và 31
2. tìm x,y thuộc N, biết:
a. [ x + 5 ] nhan [ y - 2 ] = 15
b. [ 2x -1 ] nhan [ y - 3 ] = 10
3.
a.từ 1 đến 1000 có bao nhiêu số chia hết cho 5
b. tong 1015 + 8 có chia hết cho 9 và 2 không
c. tong 102010 + 8 có chia hết cho 9 không
d.chứng minh rằng ab + ba chia hết cho 11
e.chứng minh aaa luôn chia hết cho 37
1) B = 31 + 32 +...+ 32010
= (3+32) + (33 + 34) + ...+ (32009 + 32010 )
= 3(1+3) + 33(1+3) + ...+ 32009(1+3)
= 3.4 + 33.4 + ...+ 32009.4
= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)
B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)
= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)
= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)
Từ (1) và (2) => đpcm
b) Làm tương tự như câu a)
3)
a) Số chữ số chia hết cho 55 từ 11 đến 10001000 là
\(\dfrac{1000-5}{5}\)+1 =200 (số)
b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )
=> 1015 + 8 \(\equiv\) 0 (mod 9)
=> 1015 + 8 \(⋮\) 9
Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)
c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9
=> 102010 + 8 chia hết cho 9
d) Ta có : ab + ba
= 10a + b + 10b + a
= 11a + 11b
= 11(a+b) \(⋮\) 11
e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37
Chúc bn học tốt !
GIẢI HẾT DÙM MÌNH NHA, AI GIẢI HẾT MÌNH TICK CHO! GHI RÕ RA HẾT LUN NHA!
1/tính tổng: S1= 1+2+3+4+....+999
2/khi chia số tự nhiên a cho 36 ta đc số dư là 12 hỏi a có chia hết cho 4 ko? 9 ko?
3/ tìm tập hợp các số tự nhiên N vừa chia hết cho 2, vừa chia hết cho 5 và 953<n<984
4/từ 1 đến 1000 có bn số chia hết cho 5?
5/ tổng 1015+8 có chia hết cho 9 và 2 ko?
6/tổng 102010+14 có chia hết cho 3 và 2 ko?
7/ hiệu 102010 - 4 có chia hết cho 3 ko?
8/a/ chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b/ chứng minh rằng ab+ba chia hết cho 11
c/ chứng minh rằng aaa luôn chia hết cho 37
d/ chứng minh ab-ba chia hết cho 9 với a>b
9/ tìm số tự nhiên x,y:
(x-1).y=42
xy=33
(x-1)(y+1)=44
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
TA tính như sau :ta tính số số hạng trước -->(999-1):1+1=999(SSH)
=>Tổng của dãy trên là :(1+999)x999:2=499500
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15