so sánh A = 2^ 2017 và B= 4+2^2+2^3+2^4+...+2^2016
mọi người giúp em với ạ , thanks
A=1/2!+2/3!+3/4!+....999/1000! so sánh với 1 giúp em với ạ :(((
Cho A=3+2^2+2^3+2^4+...+2^2010 và B=2^2011
So sánh A và B
(HELP ME - tối nay em phải nộp rồi - AI NHANH EM TICK CHO - THANKS mọi người - Giải chi tiết nha )
Ta có:A= \(1+2+2^2+2^3+...+2^{2010}\)
=> 2A= 2(\(1+2+2^2+2^3+...+2^{2010}\))
=> 2A= 2 +\(2^2+2^3+2^4+...+2^{2011}\)
=> 2A-A= A =(2+ \(2^2+2^3+2^4+...+2^{2011}\)) -( \(1+2+2^2+2^3+...+2^{2010}\))
=> A= \(2^{2011}-1\)
Mà B = \(2^{2011}\)
=> A < B
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2010 hay A = 3 + 2^2 + 2^3 + 2^4 + ... + 2^2010 bạn
So sánh:
1+2+2^2+2^3+2^4+...+2^2016 và 2^2017
Làm giúp mik đi ạ. Mik đang cần gấp lắm
Đặt : A = 1 + 2 + 2^2 + 2^3 + ... + 2^2016
=> 2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017
=> 2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2016 )
=> A = 2^2017 - 1
=> A < 2^2017
Vậy A < 2^2017
Ta đặt A = 1 + 2 + 22 + 23 + ....+ 22016
=> 2A = 2 + 22 + 23 + ...+22017
=> 2A - A = (2+22+23+...+22017) - (1+2+22+...+22016 )
=> A = 22017 - 1
Mà 22017 - 1 < 22017
=> A < 22017
Vậy 1 + 2 + 22 + ...+ 22016 < 22017
không thực hiện phép tính hãy so sánh A= 2017 . 2018 - 2000 và B= 2017^2 + 17
các cao nhân giúp em vói ạ
Mọi người giúp em 4 bài này với ạ, ai giúp em tick và cảm ơn người đó nhiều ạ!
1. Cho A = 1/2 mũ 2+ 1/3 mũ 2+...+1/100 mũ 2
Chứng Minh A<1
Lưu ý: mũ ở phần mẫu mn nhé
2. So sánh
23/99 ; 2323/9999 ; 232323/999999 ; 23232323/99999999
3. Tính A =
(1/7+1/23+1/1009) : ( 1/7 +1/23 - 1/1009+1/7 x 1/23 x 322/1009 )
4 Chứng Minh rằng nếu x,y thuộc Z thoã mãn ( 2x+3y) chia hết cho 17 thì ( 9x + 5y) chia hết cho 17
Ai giúp em với ạ em đang cần gấp, hứa sẽ tick nếu ai giúp,thanks ạ 😍😍
i don't now
mong thông cảm !
...........................
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
ta có :
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
nhiều qá lm sao nổi
Bài 1: Rút gọn
a -35/50
b 15.34/51.55
c 17.9-2.17/63.3-63
Bài 2: So sánh
a -2/3 và -1/4
b 14/21 và 60/72
giúp em nhanh với ạ em sẽ đánh giá 5 sao
a -35/50 = -7/10
b 510/2805 = 2/11
c 119/126
B2
-2/3= -8/12 , -1/4= -3/12
-8/12<-3/12 nên -2/3<-1/4
b 2/3 5/6
12/18 và 15/18
12/18<15/18
nên 14/21<60/72
bài 1 :
a) = -7/10
b) = 510/2805 = 2/11
c) = 17/18
Giúp mình bài này nha mọi người
Cho tổng T = 2/2^1 + 3/2^2 + 4/2^3 + ... +2016/2^2015 + 2017/2^2016
So sánh T với 3
`Answer:`
\(T=\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T=2+\frac{3}{2}+\frac{4}{2^2}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{3}{2}-\frac{2}{2}\right)+\left(\frac{4}{2^2}-\frac{4}{2^2}\right)+...+\left(\frac{2017}{2^{2015}}-\frac{2016}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
Ta đặt \(V=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow T=2+V-\frac{2017}{2^{2016}}\text{(*)}\)
\(\Leftrightarrow2V=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)
\(\Leftrightarrow2V-V=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)
\(\Leftrightarrow2V-V=1-\frac{1}{2^{2015}}\text{(**)}\)
Từ (*)(**)\(\Rightarrow T=2+\left(1-\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow T=3-\frac{1}{2^{2015}}-\frac{2017}{2^{2016}}\)
`=>T<3`
giúp em vs ạ, em cần gấp lắm ạ :]]]
M=3/1+2 + 3/1+2+3 + 3/1+2+3+4 + ...+ 3/1+2+...+2022
so sánh M với 10/3
giúp em vs ạ, em cần gấp lắm ạ :]]]
M=3/1+2 + 3/1+2+3 + 3/1+2+3+4 + ...+ 3/1+2+...+2022
so sánh M với 10/3
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)
\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)
\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)
\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)
mà \(3< \dfrac{10}{3}\)
nên \(M< \dfrac{10}{3}\)