Ta có :
\(B=4+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow\) \(B-4=2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow\) \(2\left(B-4\right)=2^3+2^4+2^5+...+2^{2017}\)
\(\Rightarrow\) \(2\left(B-4\right)-\left(B-4\right)=B-4=2^{2017}-2^2\)
\(\Rightarrow\) \(B=2^{2017}-2^2+4=2^{2017}\)
\(\Rightarrow\) \(A=B=2^{2017}\)
Vậy \(A=B\)