Cho m, n \(\in\) N*, a \(\in\) Z. Chứng minh (am)n=am.n
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
a) Với số thực a và các số nguyên m, n, ta có:
am.an=am.n;aman=am−nam.an=am.n;aman=am−n
b) Với hai số thực a, b cùng khác 0 và số nguyên n, ta có:
(ab)n=an.bn;(ab)n=anbn(ab)n=an.bn;(ab)n=anbn
c) Với hai số thực a, b thỏa mãn 0 < a < b với số nguyên a, ta có an < bn
d) Với số thực a khác 0 và hai số nguyên m, n, ta có: Nếu m>n thì am>an
(am là a mũ m,an là amux n nha giúp mik )
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n \(\in\) Z để A là phân số
b)Tìm n\(\in\)Z để A\(\in\)Z
c)Tìm N\(\in\)Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\).
Chứng minh B tối giản
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
Cho \(n\in Z\). Chứng minh :
a) \(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}\in Z\)
b)\(B=\frac{n^4}{24}+\frac{n^3}{4}+\frac{11n^2}{24}+\frac{n}{4}\in Z\)
a) A = n/3 + n2/2 + n3/6
A = 2n+3n2+n3/6
A = 2n+2n2+n2+n3/6
A = (n+1)(2n+n2)/6
A = n(n+1)(n+2)/6
Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6
Hay A thuộc Z (đpcm)
b) B = n4/24 + n3/4 + 11n2/24 + n/4
B = n4+6n3+11n2+6n/24
B = n(n3+6n2+11n+6)/24
B = n(n3+n2+5n2+5n+6n+6)/24
B = n(n+1)(n2+5n+6)/24
B = n(n+1)(n2+2n+3n+6)/24
B = n(n+1)(n+2)(n+3)/24
Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3
Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24
Hay B nguyên (đpcm)
Bài 1: Chứng minh \(n^2+n+2\) không chia hết cho 15 với mọi n \(\in\) Z.
Bài 2: Chứng minh \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) \(\in\)Z, \(\forall a\in Z\)
Bài 1 :
Có : P = n^2+n+2 = n.(n+1)+2
Ta thấy n và n+1 là 2 số tự nhiên liên tiếp
=> n.(n+1) có tận cùng là : 0 hoặc 2 hoặc 6
=> P có tận cùng là : 2 hoặc 4 hoặc 8
=> P ko chia hết cho 5
=> ĐPCM
Tk mk nha
Bài 2 :
Xét : A = a/3 + a^2/2 + a^3/6 = 2a^2+3a+a^3/6 = a.(a^2+2a+3)/6
= a.(a+1).(a+2)/6
Ta thấy a;a+1;a+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> a.(a+1).(a+2) chia hết cho 2 và 3
=> a.(a+1).(a+2) chia hết cho 6
=> A thuộc Z
Tk mk nha
Bài 1: Chứng minh \(n^2+n+2\) không chia hết cho 15 với mọi n \(\in\) Z.
Bài 2: Chứng minh \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) \(\in\) Z, \(\forall a\in Z\)
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z^+\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z^+\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
Cho hàm số f: \(Z^+\rightarrow Z^+\) thỏa mãn đồng thời các điều kiện :
1) \(f\left(n+1\right)>f\left(n\right)\) với \(\forall n\in Z\)
2) \(f\left(f\left(n\right)\right)=n+2000\) với \(\forall n\in Z\)
a) Chứng minh: \(f\left(n+1\right)=f\left(n\right)+1\)
b) Tính \(f\left(n\right)\)
1: Cho A=44...4(2.n chữ số 4)
B=22...2(n+1 chữ số 2)
C=88...8(n chữ số 8)
Chứng minh A+B+C+7 là số chính phương
2:Cho m,n \(\in\)Z .Chứng minh 4mn(m2-n2) chia hết cho 24
3:Cho a,b,c\(\in\)Z.Chứng minh
(b-a)(c-a)(d-a)(d-b)(d-c)(c-d) chia hết cho 12
4:Tìm x,y\(\in\)Z . Thỏa mãn x3+y3=1995
1) A=4*\(\frac{10^{2n}-1}{9}\) B=\(2\cdot\frac{10^{n+1}-1}{9}\) C=\(8\cdot\frac{10^n-1}{9}\)
đặt 10^n=X => A+B+C+7=(4*x^2-4+2*10*x-2+8x-8+63)/9=(4x^2+28x+49)/9
=> A+B+C+7=\(\frac{\left(2x+7\right)^2}{3^2}\)
2) = 4mn((m^2-1)-(n^2-1))=4mn(m+1)(m-1)-4mn(n-1)(n+1)
mà m,n nguyên => m-1,m,m+1 và n-1,n,n+1 là 3 số nguyên liên tiếp nên chia hết cho 6
do đó 4mn(m^2-n^2) chia hết 6*4=24
Bài 2 ko đúng bn ak 6,4 không nguyên tố cùng nhau mà
có số 4 mà, có phải chia hết cho 4 đâu cần phải NTCN
vd: 4n(n+1) chia hết cho 8 nè (4 vs 2 cx ko phải NTCN )
Bài 1: a) Cho m, n \(\in\)N* , a \(\in\)Z . Chứng minh ( am )n = am.n
b) So sánh ( - 2 )3000 và ( - 3 )2000
a) (am)n = am.am.am.......am (n lần am) =am.n
b) Ta có: ( - 2)3000= 23000 = (23)1000=81000
( -3)2000= 32000= ( 32)1000 =91000
Vì 8<9 nên 81000<91000
Vậy ( -2)3000 < ( -3)2000
Bài 1a) Đó là công thức lũy thừa của lũy thừa rồi bạn:
\(\left(a^m\right)^n=a^{m\cdot n}\)
1b) \(\left(-2\right)^{3000}=2^{3000}\)
\(\left(-3\right)^{2000}=3^{2000}\)
\(\Rightarrow2^{3000}=\left(2^3\right)^{1000}\)
\(\Rightarrow3^{2000}=\left(3^2\right)^{1000}\)
\(2^3< 3^2\)
\(\Rightarrow\left(-2\right)^{3000}< \left(-3\right)^{2000}\)