CM: 1/a + 1/b >hoặc= 4/a+b với a,b>0
1)Tìm 3 số x,y,z sao cho :x^2+5y^2-4xy+10x-22|x+y+z| +26=0
2)CM các BĐT sau
a)(a^2+b^2)(a^1+1) > hoặc = 4a^2b với mọi a,b
b) 1/a + 1/b > hoặc = 4/a+b với mọi a,b>0
c) 1/a+3b + 1/b+3c + 1/c+3a > hoặc = 1/a+2b+c + 1/b+2c+a + 1/c+2a+b
ai làm nhanh mik sẽ tick cho :))
Bài 1 bạn tham khảo tại đây nhé:
Tim x,y,z thoa man : x^2 +5y^2 -4xy +10x-22y +Ix+y+zI +26 = 0 ...
Chúc bạn học tốt!
Chọn từ hoặc cụm từ : (1) trùng nhau; (2) 0; (3) độ dài đoạn thẳng; (4) khoảng cách giữa hai điểm; (5) cách, điền vào chỗ trống thích hợp trong mỗi câu sau đây để diễn đạt đúng về độ dài đoạn thẳng.
a) AB = 2 (cm) còn nói là .......A và B bằng 2(cm) hoặc nói là ...............AB bằng 2 (cm) hoặc A...........B một khoảng bằng 2 (cm)
b) Hai điểm A và B trùng nhau còn nói là ......A và B bằng ..........hoặc A...............B một khoảng bằng ......hoặc ...........AB bằng ...........
c) AB = 0 còn nói là ............A và B bằng .........hoặc hai điểm A và B ............hoặc ...........AB bằng ..............hoặc A .............B một khoảng bằng ...........
a) AB = 2 (cm) còn nói là ..(4)..A và B bằng 2(cm) hoặc nói là ..(3)..AB bằng 2 (cm) hoặc A ..(5)..B một khoảng bằng 2 (cm)
b) Hai điểm A và B trùng nhau còn nói là ..(4)..A và B bằng ..(2)..hoặc A ..(5)..B một khoảng bằng ..(2)..hoặc ..(3)..AB bằng ..(2)..
c) AB = 0 còn nói là ..(4)..A và B bằng ..(2)..hoặc hai điểm A và B ..(1)..hoặc ..(3)..AB bằng ..(2)..hoặc A ..(5)..B một khoảng bằng ..(2)..
cho a,b > 0 thỏa a+b=1. Cm : (a + 1/a ) * (1 + 1/b ) lớn hơn hoặc bằng 9
theo bai ra ta co :(1+1/a)(1+1/b)>=9
(a+1/a)(b+1/b)>=9
ab+a+b+1>=9ab
a+b+1>=8ab
2>=8ab
1>=4ab
(a+b)^2>=4ab (vi a+b=1)
(a-b)^2 >=0 suy r dieu phai chung minh
Cho a,b không âm. CM: \(\sqrt{\frac{a+b}{2}}\)lớn hơn hoặc bằng \(\sqrt{\frac{\sqrt{a}+\sqrt{b}}{2}}\)
Với a>0. CM: a+ \(\frac{1}{a}\)lớn hơn hoặc bằng 2
CM cái sau:
Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)
Chứng minh:
\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
(áp dụng vào cái trên)
Dấu "=" xảy ra khi:
\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)
Cho a,b>0 thỏa mãn a+b lớn hơn hoặc bằng 2. Cm \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\) bé hơn hoặc bằng 1
Ta co:
\(\frac{1}{a+b^2}+\frac{1}{a^2+b}=\frac{1}{\frac{a^2}{a}+b^2}+\frac{1}{a^2+\frac{b^2}{b}}\ge\frac{1}{\frac{\left(a+b\right)^2}{a+1}}+\text{ }\frac{1}{\frac{\left(a+b\right)^2}{b+1}}=\frac{a+b+2}{\left(a+b\right)^2}\)
Ta di chung minh:
\(\frac{a+b+2}{\left(a+b\right)^2}\le1\)
Dat \(t=a+b\left(t\ge2\right)\)
BDT can chung minh la:
\(\frac{t+2}{t^2}\le1\)
\(\Leftrightarrow\left(t-2\right)\left(t+1\right)\ge0\left(True\right)\)
Dau '=' xay ra khi \(a=b=1\)
Ta có:\(\frac{1}{a+b^2}\le\frac{1}{2b\sqrt{a}}\)( áp dụng bất đẳng thức coossi cho a và b^2 rồi nghịch đảo)
\(\frac{1}{b^2+a}\le\frac{1}{2b\sqrt{a}}\)
Do đó: \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\le\frac{1}{2b\sqrt{a}}+\frac{1}{2a\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{2ab}=\frac{\sqrt{a}.1+\sqrt{b}.1}{2ab}\)
\(\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2ab}=\frac{a+b+2}{4ab}\)( áp dụng bất đẳng thức cosi cho \(\sqrt{a}.1\)và \(\sqrt{b}.1\))
\(\le\frac{a+b+2}{\left(a+b\right)^2}=\frac{a+b}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(=\frac{1}{a+b}+\frac{2}{\left(a+b\right)^2}\)
\(\le\frac{1}{2}+\frac{2}{4}=1\)( do a+b\(\ge\)2 nên \(\frac{1}{a+b}\le\frac{1}{2}\)và \(\left(a+b\right)^2\ge4\)nên \(\frac{2}{\left(a+b\right)^2}\le\frac{2}{4}\))
Dấu bằng xảy ra khi và chỉ khi a=b=1
cm:2a2-b2-2ab-2a+1> hoặc bằng 0 với mọi a,b
Ai giúp với :
a,CMR : a2+b2 luôn lớn hơn hoặc bằng 2ab
b, Áp dụng : Cho A =(a+1)(b+1) ; ab=1;a>0;b>0
CMR A luôn lớn hơn hoặc bằng 4
cho a,b,c, là ba số dương. CM rằng :
a, (a+b)(1/a+1/b) lớn hơn hoặc bằng 4
b, (a+b+c)(1/a+1/b+1/c) lớn hon hoặc bằng 9
a.
Xét hiệu:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-4\)
\(=1+\dfrac{a}{b}+\dfrac{b}{a}+1-4\)
\(=\dfrac{a}{b}+\dfrac{b}{a}-2\)
\(=\dfrac{a^2+b^2-2ab}{ab}\)
\(=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)
Suy ra:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
b.
Đặt:
\(A=\)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)
\(=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+3\) (1)
Áp dụng BĐT Cauchy cho 2 số không âm, ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\) (2)
\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (3)
\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (4)
Từ (1)(2)(3)(4) cộng vế theo vế, ta được:
\(A\ge3+2+2+2=9\)
=> BĐT luôn đúng
=> \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
b)Đặt \(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(A=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)
\(A=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)
Ta chứng minh bđt sau:\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Áp dụng\(\Rightarrow P\ge3+2+2+2=9\left(đpcm\right)\)
chưng minh
a) x/y + y/z + z/x > hoặc = 3 với x,y,z >0
b) (x+y)(y+z)(z+x) > hoặc + 8xyz với x,y,z > 0
c) 1/a + 1/b + 1/c > hoặc = 3 với a+b+c = 3
d) a/b+c + b/c+a + c/b+a > hoặc = 3/2 với a , b , c > 0