a.
Xét hiệu:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-4\)
\(=1+\dfrac{a}{b}+\dfrac{b}{a}+1-4\)
\(=\dfrac{a}{b}+\dfrac{b}{a}-2\)
\(=\dfrac{a^2+b^2-2ab}{ab}\)
\(=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)
Suy ra:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
b.
Đặt:
\(A=\)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)
\(=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+3\) (1)
Áp dụng BĐT Cauchy cho 2 số không âm, ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\) (2)
\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (3)
\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (4)
Từ (1)(2)(3)(4) cộng vế theo vế, ta được:
\(A\ge3+2+2+2=9\)
=> BĐT luôn đúng
=> \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
b)Đặt \(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(A=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)
\(A=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)
Ta chứng minh bđt sau:\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Áp dụng\(\Rightarrow P\ge3+2+2+2=9\left(đpcm\right)\)
a) c2 : ( a + b)( \(\dfrac{1}{a}+\dfrac{1}{b}\)) ≥ 4
⇔ 1 + \(\dfrac{a}{b}+\dfrac{b}{a}+1\) ≥ 4
Áp dụng BĐT : \(\dfrac{y}{x}+\dfrac{x}{y}\) ≥ 2 ( x > 0 , y > 0 )
⇒ 2 + \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 4
⇔ \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2 ( đpcm)
b) \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9
⇔ 1 + \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{c}{a}\) + 1 + 1 ≥ 9
⇔ 3 + \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{c}{a}\) ≥ 9 ( *)
Áp dụng BĐT : \(\dfrac{y}{x}+\dfrac{x}{y}\) ≥ 2 ( x > 0 , y > 0 )
Ta có :
*) \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2 ( a > 0 , b > 0 ) ( 1)
*) \(\dfrac{b}{c}+\dfrac{c}{b}\) ≥ 2 ( b > 0 ; c > 0 ) ( 2)
*) \(\dfrac{a}{c}+\dfrac{c}{a}\) ≥ 2 ( a > 0 ; c > 0) ( 3)
Từ ( * ; 1 ; 2 ; 3 ) ⇒ đpcm