Tính nhanh: 3/1x3+3/3x5+3/5x7+...+3/49x51
Tính tổng :
3/1x3+3/3x5+3/5x7+.........+3/49x51
Đặt \(S=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{3}{49\cdot51}\)
\(S=\frac{3}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(S=\frac{3}{2}\cdot\left(1-\frac{1}{51}\right)\)
\(\Rightarrow S=\frac{3}{2}\cdot\frac{50}{51}=\frac{3\cdot50}{2\cdot51}=\frac{150}{102}=\frac{25}{17}\)
tính s = 4/1x3 + 16/3x5 + 36/5x7 + ... + 2500/49x51
\(S=\frac{4}{1\times3}+\frac{16}{3\times5}+\frac{36}{5\times7}+...+\frac{2500}{49\times51}\)
\(=\frac{1\times3+1}{1\times3}+\frac{3\times5+1}{3\times5}+\frac{5\times7+1}{5\times7}+...+\frac{49\times51+1}{49\times51}\)
\(=\frac{1\times3}{1\times3}+\frac{1}{1\times3}+\frac{3\times5}{3\times5}+\frac{1}{3\times5}+\frac{5\times7}{5\times7}+\frac{1}{5\times7}+...+\frac{49\times51}{49\times51}+\frac{1}{49\times51}\)
\(=1+\frac{1}{1\times3}+1+\frac{1}{3\times5}+1+\frac{1}{5\times7}+...+\frac{1}{49\times51}\) ( Có : \(\left(51-3\right)\div2+1=25\)chữ số 1 )
\(=25+\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{49\times51}\)
\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}\right)+\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\times\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}\times\left(\frac{1}{49}-\frac{1}{51}\right)\)
\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=25+\frac{1}{2}\times\left(1-\frac{1}{51}\right)\)
\(=25+\frac{1}{2}\times\frac{50}{51}\)
\(=25+\frac{25}{51}\)
\(=\frac{1300}{51}\)
\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+...+\frac{2500}{49.51}\)
\(=\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+...+\frac{2500}{2499}\)
\(=1+\frac{1}{3}+1+\frac{1}{15}+1+\frac{1}{35}+...+1+\frac{1}{2499}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2500}\right)\)
\(=25+\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\right)\)
Đặt \(A=\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(=1-\frac{1}{51}=\frac{50}{51}\)
\(\Rightarrow S=25+\frac{50}{51}=\frac{1325}{51}\)
Vậy S=\(\frac{1325}{51}\)
1x3/3x5 + 2x4/5x7 + 3x5/7x9 + ............... +49x51/99x101
1x3/3x5 + 2x3/5x7 + 3x5/7x9 + ............... +49x51/99x101
A = 4/1x3+16/3x5+36/5x7+...+2500/49x51
tính tổng của A
Dễ thôi bạn à
\(A=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+...+\frac{2500}{49.51}\)
\(A=\frac{1.3+1}{1.3}+\frac{3.5+1}{3.5}+\frac{5.7+1}{5.7}+...+\frac{49.50+1}{49.51}\)
\(A=\frac{1.3}{1.3}+\frac{1}{1.3}+\frac{3.5}{3.5}+\frac{1}{3.5}+\frac{5.7}{5.7}+\frac{1}{5.7}+...+\frac{49.51}{49.51}+\frac{1}{49.51}\)
\(A=1+\frac{1}{1.3}+1+\frac{1}{3.5}+1+\frac{1}{5.7}+...+1+\frac{1}{49.51}\) (có: (51 - 3) : 2 + 1 = 25 chữ số 1)
\(A=25+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(A=25+\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{49}-\frac{1}{51}\right)\)
\(A=25+\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=25+\frac{1}{2}.\left(1-\frac{1}{51}\right)\)
\(A=25+\frac{1}{2}.\frac{50}{51}\)
\(A=25+\frac{25}{51}\)
\(A=\frac{1300}{51}\)
Tính nhanh :
3 / 1x3 + 3 / 3x5 + 3 / 5x7 +.............+ 3 / 2017x2019
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{2017.2019}\)
\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}\)
\(=\frac{1009}{673}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}.....+\frac{3}{2017.2019}\)
\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2017.2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}=\frac{1009}{673}\)
\(\frac{3}{1\times3}+\frac{3}{3\times5}+.......+\frac{3}{2017\times2019}\)
\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+......+\frac{2}{2017\times2019}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.......+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\times\frac{2018}{2019}\)
\(=\frac{1009}{673}\)
Tính giá trị biểu thức S = 4/1x3+16/3x5+36/5x7+...+2500/49x51
cảm ơn các bạn trả lời mình
Ta có:
\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+........+\frac{2500}{49.51}\)
Câu 1:Tính nhanh:
3/1x3+3/3x5+3/5x7+3/7x9+...+3/49x51
Câu 2:Tìm các chữ số a,b,c sao cho a,b x a,b =c,ab.
Nhanh thì mình
Sẽ cho tick
Ta có : \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+......+\frac{3}{49.51}\)
\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{49.51}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{50}\right)\)
\(=\frac{3}{2}.\frac{49}{50}=\frac{147}{100}\)
Bài 1 dùng máy tính Casio bấm là ra.
tính
3/1x3 + 3/3x5 + 3/5x7 +............+3/99x101=..........................................
Đặt \(S=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(\Rightarrow S=\frac{2}{2}.\left(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{3}{99.101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(1-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\frac{100}{101}\)
\(\Rightarrow S=\frac{150}{101}\)