(8x-3).(3x+2)-(4x+7).(x+4)=(4x+1).(5x-1)
(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
\(\Rightarrow24x^2+16x-9x-6-\left(4x^2+16x+7x+28\right)=10x^2-2x+5x-1-33\)
\(\Rightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1-33\)
\(\Rightarrow24x^2-4x^2-10x^2+16x-9x-16x-7x+2x-5x=6+28-1-33\)
\(\Rightarrow10x^2-19x=0\)
\(\Rightarrow x\left(10x-19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\dfrac{19}{10}\right\}\)
Đề yêu cầu làm gì em?
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)
Ta có:(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)
⇔24x2+16x-9x-6-4x2-16x-7x-28=10x2-2x+5x-1
⇔20x2-16x-34=10x2+3x-1
⇔10x2-19x-33=0
⇔(x-3)(10x+11)=0
suy ra x-3=0⇔x=3 hoặc10x+11=0⇔x=\(\frac{-11}{10}\)
Tìm x biết :
a, 4.(18 - 5x) - 12.(3x - 7) = 15.(2x - 16) - 6(x + 14)
b, 5.(3x + 5) - 4.(2x - 3) = 5x + 3.(2x + 12) + 1
c, 2.(5x - 8) - 3.(4x - 5) = 4.(3x - 4) + 11
d, (3x + 2)(2x + 9) - (x + 2)(6x + 1) = (x + 1) - (x - 6)
e, (8x - 3)(3x + 2) - (4x + 7)(x + 4)= (2x + 1)(5x - 1) - 33
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
b, 5(3x + 5) - 4(2x - 3) = 5x + 3(2x + 12) + 1
=> 15x + 25 - 8x + 12 = 5x + 6x + 36 + 1
=> (15x - 8x) + (25 + 12) = 11x + 37
=> 7x + 37 = 11x + 37
=> 11x - 7x = 0
=> x = 0
Tìm x biết
1,(2x+5)(2x-7)-(-4x-3)^2=16
2,(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)-(5x-1)
https://olm.vn/hoi-dap/detail/55678450227.html
(8x-3)(3x+2) - (4x+7)(x+4) = 2(2x+1)(5x-1)
Tìm x
(15x-5) (4x-1) + (3x-7) (1-16x) =81
(2x+4) (x-4) +(x-5) (x-2) =3x+5 (x-4)
(8x-3) (3x+2) - (4x+7) (x+4) = (x+1) (5x-1)
d) (8x-3) (3x 2) - (4x 7) (x 4) = (2x 1) (5x-1)
(8x-3)(3x+2)-(4x+7)(x+4)+(2x+1)(1-5x)=-33
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)+\left(2x+1\right)\left(1-5x\right)=-33\)
\(pt\Leftrightarrow3x\left(8x-3\right)+2\left(8x-3\right)-\left(x\left(4x+7\right)+4\left(4x+7\right)\right)+\left(2x+1\right)-5x\left(2x+1\right)+33=0\)
\(\Leftrightarrow24x^2-9x+16x-6-\left(4x^2+7x+16x+28\right)+2x+1-10x^2-5x+33=0\)
\(\Leftrightarrow24x^2-9x+16x-6-4x^2-7x-16x-28+2x+1-10x^2-5x+33=0\)
\(\Leftrightarrow10x^2-19x=0\Leftrightarrow x\left(10x-19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)