Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tâm Lê
Xem chi tiết
Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
Kirito-Kun
6 tháng 9 2021 lúc 19:42

a. (3a + 1)3

= 27a3 + 27a2 + 9a + 1

Vy trần
Xem chi tiết
Vy trần
22 tháng 9 2021 lúc 19:35

giúp mình nha mình cần gấp, cảm ơn mọi người trước

Phan An
22 tháng 9 2021 lúc 20:17

a) (2x+3)2

=4x^2+12x+9

b) (x-2/5)3

=x^3-1.2x^2+0.48x-0.064

c) (4x2+1)3

=(4x^2)^3+12x^4+12x^2+1

 

 

 

Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 20:41

\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)

\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)

chi vũ
Xem chi tiết
chi vũ
25 tháng 12 2023 lúc 19:53

giúp mình với ah đang cần gấp ah

 

Minh Phương
25 tháng 12 2023 lúc 20:08

C

Sao hỏa Cnn mèo
Xem chi tiết
Nguyễn Thị Thương Hoài
25 tháng 10 2023 lúc 15:55

Bài 1: 

a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)

\(x^2\) -  16 - 5\(x\) - 5 + \(x^2\) + \(x\) 

= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)

= 2\(x^2\) - 4\(x\) - 21

Nguyễn Thị Thương Hoài
25 tháng 10 2023 lúc 15:58

b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)

=  3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7

= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)

= - 3\(x^2\) + 3\(xy\) - 3

Nguyễn Thị Thương Hoài
25 tháng 10 2023 lúc 16:01

Bài 2:

a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)

= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2

= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2

= 6\(x^3\) - 5\(x^2\)y + 2y2

Cao Nguyễn Tuệ Phú
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:24

a: \(=15x^4-12x^3+9x^2\)

c: \(=5x^3-15x^2-4x^2+12x\)

\(=5x^3-19x^2+12x\)

Mina
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 12 2021 lúc 23:17

a) \(=\dfrac{x+15}{\left(x-3\right)\left(x+3\right)}+\dfrac{2}{x+3}=\dfrac{x+15+2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

b) \(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{y^2+x^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x+y\right)^2-\left(x-y\right)^2+2\left(x^2+y^2\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x^2+y^2+2xy\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)