tìm những giá trị của m để đường thẳng (d) :y=2x+m cắt (P):y=-x^2 tại 2 điểm phân biệt
(P):y=\(x^2\)
(d):y=2(m-1)x-\(m^2\)+2m
Tìm giá trị của m để (d) cắt (P) tại 2 điểm phân biệt nằm cùng bên phải đường thẳng x=1
cho hàm số \(y=x^2-2x+2\) có đồ thị là Parabol (P) và đường thẳng d:\(y=x+m\). Gọi \(m_o\) là giá trị của m để (d) cắt (P) tại 2 điểm phân biệt A,B sao cho \(OA^2+OB^2=10\). Tìm m
- Xét phương trình hoành độ giao điểm :\(x^2-2x+2=x+m\)
\(\Leftrightarrow x^2-3x+2-m=0\)
Có \(\Delta=b^2-4ac=9-4\left(2-m\right)=9-8+4m=4m+1\)
- Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\) \(\Leftrightarrow m>-\dfrac{1}{4}\left(1\right)\)
Theo viet : \(\left\{{}\begin{matrix}x_a+x_b=3\\x_ax_b=2-m\end{matrix}\right.\)
- Ta có : \(OA^2+OB^2=10\)
\(\Leftrightarrow x^2_A+y^2_A+x_B^2+y^2_B=10\)
\(\Leftrightarrow x^2_a+x^2_b+\left(x_a+m\right)^2+\left(x_b+m\right)^2=10\)
\(\Leftrightarrow2x^2_a+2x^2_b+2m\left(x_a+x_b\right)+2m^2=10\)
\(\Leftrightarrow2\left(x_a+x_b\right)^2-4x_ax_b+2m\left(x_a+x_b\right)+2m^2-10=0\)
\(\Leftrightarrow18-4\left(2-m\right)+6m+2m^2-10=0\)
\(\Leftrightarrow2m^2+10m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)
- Kết hợp ĐK (1) => m = 0 ( TM )
Vậy ...
cho hàm số \(y=x^2-2x-2\) có đồ thị là parabol (P) và đường thẳng d có phương trình y = x - m. giá trị của m để đường thẳng d cắt (P) tại 2 điểm phân biệt A, B sao cho \(OA^2+OB^2\) đạt giá trị nhỏ nhất
Tìm các giá trị thực của m để đường thẳng y = 2 x + m cắt đồ thị hàm số y = 1 − x x + 2 tại hai điểm phân biệt?
A. m ≥ 0
B. m > 0
C. m ∈ ℝ
D. m < 0
Cho hàm số y = 2 x + 3 x + 2 có đồ thị (C) và đường thẳng d: y = x + m Các giá trị của tham số m để đường thẳng (C) cắt đồ thị tại hai điểm phân biệt là:
A. m > 2
B. m > 6
C. m = 2
D. m < 2 hoặc m > 6
Cho parabol (P): \(y=2x^2+6x-1\)
Tìm giá trị của k để đường thẳng Δ: \(y=x\left(k+6\right)+1\) cắt parabol tại hai điểm phân biệt M,N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: \(4x+2y-3=0\)
Tìm giá trị của m để đường thẳng d: y = 2x + m cắt đồ thị (C) của hàm số y = x + 1 x - 1 tại hai điểm phân biệt A, B sao cho 0 o < A O B ⏞ < 90 o
A. m = 4
B. m ≥ 5
C. m > 5
D. m = 5
Phương trình hoành độ giao điểm của (C) và d là:
x + 1 x - 1 = 2 x + m ⇔ x ≠ 1 f x = 2 x 2 + m - 3 - m - 1
Ta có
∆ = m 2 + 2 m + 7 > 0 ∀ m f 1 = - 2 ≠ 0
=> d luôn cắt tại hai điểm phân biệt A, B.
Gọi x 1 ; x 2 lần lượt là hoành độ các điểm A, B. Khi đó A O B ⏞ nhọn.
⇔ cos A O B ⏞ = O A 2 + O B 2 - A B 2 2 . O A . O B > 0 ⇔ O A 2 + O B 2 > A B 2 ⇔ x 1 2 + 2 x 1 + m 2 + x 2 2 + 2 x 2 + m 2 > 5 x 2 - x 1 2
Sử dụng định lí Viet và giải bất phương trình theo m ta thu được m > 5
Đáp án C
Cho hàm số y = x 2 − 2 x − 2 có đồ thị (P), và đường thẳng (d) có phương trình y = x + m . Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho O A 2 + O B 2 đạt giá trị nhỏ nhất
A. m = − 5 2
B. m = 5 2
C. m = 1
D. m = 2
Phương trình hoành độ giao điểm: x 2 − 2 x − 2 = x + m ⇔ x 2 − 3 x − 2 − m = 0
(d) cắt (P) tại hai điểm phân biệt A, B ⇔ Δ > 0 ⇔ 17 + 4 m > 0 ⇔ m > − 17 4
Giả sử (*) có hai nghiệm x 1 , x 2 thì x 1 + x 2 = − b a = 3 x 1 . x 2 = c a = − m − 2
= 18 − 4 ( − 2 − m ) + 6 m + 2 m 2 = 2 m 2 + 10 m + 26 = 2 m + 5 2 2 + 27 2 ≥ 27 2 với m > − 17 4
Vậy giá trị nhỏ nhất của O A 2 + O B 2 là 27 2 khi m = − 5 2
Đáp án cần chọn là: A
Cho (P) : y=x2 và đường thẳng (d) y = (m+2).x. Tìm các giá trị của m để (P) cắt (d) tại 2 điểm phân biệt có các hoành độ là số nguyên.
Phương trình hoành độ giao điểm: x2−(1−2m)x+m2=0x2−(1−2m)x+m2=0
Δ=(1−2m)2−4m2=−4m+1>0⇒m>14Δ=(1−2m)2−4m2=−4m+1>0⇒m>14
Do x1x1 là nghiệm của pt nên
x21−(1−2m)x1+m2⇔x21=(1−2m)x1−m2x12−(1−2m)x1+m2⇔x12=(1−2m)x1−m2
Thế vào bài toán:
⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3
⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0
⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0
⇔−4m2.m2−2m3(1−2m)+5m−3=0⇔−4m2.m2−2m3(1−2m)+5m−3=0
⇔2m3−5m+3=0⇔2m3−5m+3=0
⇔(m−1)(2m2+2m−3)=0⇒⎡⎣⎢⎢⎢m=1m=−1+7√2m=−1−7√2<14(l)
Phương trình hoành độ giao điểm: x2−(1−2m)x+m2=0x2−(1−2m)x+m2=0
Δ=(1−2m)2−4m2=−4m+1>0⇒m>14Δ=(1−2m)2−4m2=−4m+1>0⇒m>14
Do x1x1 là nghiệm của pt nên
x21−(1−2m)x1+m2⇔x21=(1−2m)x1−m2x12−(1−2m)x1+m2⇔x12=(1−2m)x1−m2
Thế vào bài toán:
⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3
⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0
⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0
⇔−4m2.m2−2m3(1−2m)+5m−3=0⇔−4m2.m2−2m3(1−2m)+5m−3=0
⇔2m3−5m+3=0⇔2m3−5m+3=0
⇔(m−1)(2m2+2m−3)=0⇒ m=1 hoặc m=−1+7√2 hoặc m=−1−7√2<14(l)
Vậy ............................................
k cho mk nha !!!
có đáp án chưa ạ ?