1/x + y/3 = 5/6. tìm số nguyên dương x,y
tìm các số nguyên dương x,y biết rằng 3/x-5-y/3=1/6
=>\(\dfrac{9-y\left(x-5\right)}{3\left(x-5\right)}=\dfrac{1}{6}\)
=>\(\dfrac{18-2y\left(x-5\right)}{6\left(x-5\right)}=\dfrac{x-5}{6\left(x-5\right)}\)
=>18-2y(x-5)=x-5
=>(x-5)+2y(x-5)=18
=>(x-5)(2y+1)=18
=>\(\left(x-5;2y+1\right)\in\left\{\left(2;9\right);\left(6;3\right);\left(18;1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(7;4\right);\left(11;1\right)\right\}\)
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm các số nguyên dương x,y biết:
\(\dfrac{x}{6}-\dfrac{5}{2y+1}=\dfrac{2}{3}\)
\(\dfrac{x}{6}-\dfrac{5}{2y+1}=\dfrac{2}{3}\)
\(\dfrac{x}{6}-\dfrac{5.2}{2y.2+1.2}=\dfrac{4}{6}\)(vì 2y + 1 là số lẻ)
\(\dfrac{x}{6}-\dfrac{10}{4y+2}=\dfrac{4}{6}\)
Để \(\dfrac{x}{6}-\dfrac{10}{4y+2}=\dfrac{4}{6}\)thì y = 1 để cùng mẫu số
Khi đó ta có\(\dfrac{x}{6}-\dfrac{10}{4y+2}=\dfrac{4}{6}\) = \(\dfrac{x}{6}-\dfrac{10}{4+2}=\dfrac{4}{6}\) = \(\dfrac{x}{6}-\dfrac{10}{6}=\dfrac{4}{6}\)
Vì 4+10 = 14 => x = 14
Vậy y = 1; x = 14
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
Bài 5: Tìm tất cả các cặp số nguyên dương (x, y) thỏa mãn: (x+y)^3=(x-y-6)^2
bài 1: Tìm x,y,z thuộc Z : Biết x-y=9; y-z= -10;z+11
bài 2: Cho a là 1 số nguyên dương . Hỏi b là số nguyên dương hay số nguyên âm nếu:
a) ab là một số nguyên dương
b) ab là 1 số nguyên âm
bài 3: Tìm x thuộc Z biết:
a) x-14=3x+18
b)2(x-5)- 3(x-4)= -6+15(-3)
c)(x+7)(x-9)=0
d)I2x-5I-7=22
tìm các số nguyên dương x,y thỏa mãn :1/x+y/3=1/6
\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)
=> \(\frac{1}{x}=\frac{1}{6}-\frac{y}{3}\)
=> \(\frac{1}{x}=\frac{1-2y}{3}\)
=> x(1 - 2y) = 3 = 1 . 3 = 3.1 = (-1) . (-3) = (-3) . (-1)
Lập bảng :
1 - 2y | 1 | -1 | 3 | -3 |
x | 3 | -3 | 1 | -1 |
y | 0 | 1 | -1 | 2 |
Vậy ...
\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{3}{3x}+\frac{xy}{3x}=\frac{1}{6}\)
\(\Leftrightarrow\frac{3+xy}{3x}=\frac{1}{6}\)
\(\Leftrightarrow6\left(3+xy\right)=3x\)
\(\Leftrightarrow2\left(3+xy\right)=x\)
\(\Leftrightarrow6+2xy=x\)
\(\Leftrightarrow6=x-2xy\)
\(\Leftrightarrow6=x\left(1-2y\right)\)
\(\Rightarrow\hept{\begin{cases}x\\1-2y\end{cases}}\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
\(x\) | \(-6\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(1-2y\) | \(-1\) | \(-2\) | \(-3\) | \(-6\) | \(6\) | \(3\) | \(2\) | \(1\) |
\(y\) | \(1\) | \(\varnothing\) | \(2\) | \(\varnothing\) | \(\varnothing\) | \(-1\) | \(\varnothing\) | \(0\) |
Vậy \(x,y\in\left\{\left(-6;-1\right);\left(-3;2\right);\left(3;-1\right);\left(1;0\right)\right\}\)
@NCTK@ Em chú ý đề bài là các số nguyên dương nhé!
câu 1: tìm các cặp số nguyên (x; y) thõa mản 10x+y=x2+y2+1
câu 2: tìm số nguyên dương nhỏ nhất thỏa : chia 2 dư 1, chia cho 3 dư 2, chia cho 4 dư 3 , chia cho 5 dư 4, chia cho 6 dư 5, chia cho 7 dư 6, chia cho 8 dư 7, chia cho 9 dư 8, chia cho 10 dư 9.
câu 3 tìm các cặp số (x; y) nguyên dương nghiệm đúng phương trình 5x4-8(12-y2)=2207352
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ