\(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}=3x+4\)
Giải phương trình
\(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}\)=3x+4
Lời giải:
ĐK: $x\geq \frac{1}{3}$
PT $\Leftrightarrow \sqrt{(3x-1)+6\sqrt{3x-1}+9}+\sqrt{(3x-1)-6\sqrt{3x-1}+9}=3x+4$
$\Leftrightarrow \sqrt{(\sqrt{3x-1}+3)^2}+\sqrt{(\sqrt{3x-1}-3)^2}=3x+4$
$\Leftrightarrow |\sqrt{3x-1}+3|+|\sqrt{3x-1}-3|=3x+4$
Nếu $x\geq \frac{10}{3}$ thì:
$\sqrt{3x-1}+3+\sqrt{3x-1}-3=3x+4$
$\Leftrightarrow 2\sqrt{3x-1}=3x+4$
$\Leftrightarrow 2\sqrt{3x-1}=(3x-1)+5$
$\Leftrightarrow (\sqrt{3x-1}-1)^2=-4< 0$ (vô lý)
Nếu $\frac{1}{3}\leq x< \frac{10}{3}$ thì:
$\sqrt{3x-1}+3+3-\sqrt{3x-1}=3x+4$
$\Leftrightarrow 2=3x\Leftrightarrow x=\frac{2}{3}$ (thỏa mãn)
Vậy.......
a. \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-2}}=5\)
b. \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)
c. \(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}=3x+4\)
d. \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-2\sqrt{2x-5}}=2\sqrt{2}\)
\(a.\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\text{⇔}\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)
\(\text{⇔}\text{ |}\sqrt{x-1}-2\text{ |}+\text{ |}\sqrt{x-1}+3\text{ |}=5\) ( x ≥ 1 )
⇔ \(\text{ |}\sqrt{x-1}-2\text{ |}+\sqrt{x-1}+3=5\) ( 1 )
+) Với : \(\sqrt{x-1}>2\) ⇔ \(x>5\) , ta có :
( 1) ⇔ \(\sqrt{x-1}-2+\sqrt{x-1}+2=5\)
⇔ \(2\sqrt{x-1}=5\) ⇔ \(x=\dfrac{29}{4}\left(TM\right)\)
+) Với : \(\sqrt{x-1}< 2\text{⇔}x< 5\) , ta có :
( 1) ⇔ \(5=5\) ( luôn đúng )
KL.............
\(b.\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)
⇔ \(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=x-1\)
⇔ \(\text{ |}\sqrt{x-1}+1\text{ |}+\text{ |}\sqrt{x-1}-1\text{ |}=x-1\)
Tới đây giải tương tự như trên nhé .
Còn lại Tương tự .
mỗi căn thức trên có dạng: \(\sqrt{a^2+b+2a\sqrt{b}}\)
ta sẽ phân tích thành: \(\sqrt{a^2+b+2a\sqrt{b}}=\sqrt{\left(\sqrt{b}-a\right)^2}\) (#)
** lấy căn lớn đầu tiên của câu a làm vd**
\(a^2+b=x+3\) (1)
\(2a\sqrt{b}=-4\sqrt{x-1}\) (2)
(2) => \(a\sqrt{b}=-2\sqrt{x-1}\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\\sqrt{b}=\sqrt{x-1}\end{matrix}\right.\) (*)
thử lại với (1): \(a^2+b=a^2+\left(\sqrt{b}\right)^2=\left(-2\right)^2+\left(\sqrt{x-1}\right)^2=4+x-1=x+3\)
Nếu VT (a^2 +b) bằng VP (x+3) thì đã tìm được a và b đúng , tức là dấu suy ra cuối của (*) đúng và biểu thức có thể phân tích thành dạng căn bình phương 1 biểu thức (dạng (#))
ráp a, căn b vào công thức (#), ta đc:
\(\sqrt{x+3-4\sqrt{x-1}}=\sqrt{2+x-1-4\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}-\left(-2\right)\right)^2}=\sqrt{\left(\sqrt{x-1}+2\right)^2}=\left|\sqrt{x-1}+2\right|\)
***************
sau khi phá căn các biểu thức trong phương trình rồi thì giải phương trình chứa dấu GTTĐ bằng cách xét 4 trường hợp.
Sau khi phá hết căn lớn, phương trình sẽ có dạng như sau:
\(\left|A\right|+\left|B\right|=5\) (số 5 là lấy của câu a, làm vd thôi, còn số gì cũng đc)
chia 4 trường hợp: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}A< 0\\B< 0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A< 0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B< 0\end{matrix}\right.\end{matrix}\right.\)
(thêm dấu bằng vào 1 loại dấu thôi (lớn > hoặc bé <)
dựa vào dấu của biểu thức đang xét mà bỏ dấu GTTĐ. Sau khi ra được x thì thử lại vào đk (không được CHỈ thử vào phương trình, vì nghiệm có thể đúng trong trường hợp này nhưng sai trong trường hợp khác, dẫn đến nhận nhầm nghiệm)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
Giải phương trình vô tỉ:
a) \(\sqrt{\left(1+x\right)\left(2-x\right)}=1+2x-2x^2\)
b) \(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}=3x+4\)
c) \(2x\sqrt{x^2-x-1}+4x\sqrt{3x+1}=2x^2+2x+6\)
a) ĐKXĐ: \(-1\leq x\leq 2\)
\(\sqrt{(1+x)(2-x)}=1+2x-2x^2\)
\(\Leftrightarrow \sqrt{2+x-x^2}=1+2x-2x^2=-3+2(2+x-x^2)\)
Đặt \(\sqrt{2+x-x^2}=t(t\geq 0)\). PT trở thành:
\(t=-3+2t^2\)
\(\Leftrightarrow 2t^2-t-3=0\Leftrightarrow (2t-3)(t+1)=0\)
\(\Rightarrow t=\frac{3}{2}\) (do \(t\geq 0)\)
\(\Rightarrow 2+x-x^2=\frac{9}{4}\Rightarrow x^2-x+\frac{1}{4}=0\)
\(\Leftrightarrow (x-\frac{1}{2})^2=0\Rightarrow x=\frac{1}{2}\) (thỏa mãn)
b) ĐK: \(x\geq \frac{1}{3}\)
PT \(\Leftrightarrow \sqrt{(3x-1)+6\sqrt{3x-1}+9}+\sqrt{(3x-1)-6\sqrt{3x-1}+9}=3x+4\)
\(\Leftrightarrow \sqrt{(\sqrt{3x-1}+3)^2}+\sqrt{(\sqrt{3x-1}-3)^2}=3x+4\)
\(\Leftrightarrow \sqrt{3x-1}+3+|\sqrt{3x-1}-3|=3x+4\)
\(\Leftrightarrow |\sqrt{3x-1}-3|=3x-\sqrt{3x-1}+1\)
Nếu \(\sqrt{3x-1}\geq 3\):
\(\Rightarrow \sqrt{3x-1}-3=3x-\sqrt{3x-1}+1\)
\(\Leftrightarrow 3x+4-2\sqrt{3x-1}=0\)
\(\Leftrightarrow (3x-1)-2\sqrt{3x-1}+5=0\)
\(\Leftrightarrow (\sqrt{3x-1}-1)^2+4=0\) (vô lý)
Nếu \(\sqrt{3x-1}< 3\):
\(\Rightarrow 3-\sqrt{3x-1}=3x-\sqrt{3x-1}+1\)
\(\Leftrightarrow 3x=2\Rightarrow x=\frac{2}{3}\) (thỏa mãn)
Vậy...........
Giải phương trình vô tỉ:
a) \(4x^2-4x-10=\sqrt{8x^2-6x-10}\)
b) \(\sqrt{\left(x+1\right)\left(2-x\right)}=1+2x-2x^2\)
c) \(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}=3x+4\)
d) \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
câu a nè bạn: http://123link.pw/O59k8hdZ
a,Ta có:\(4x^2-4x-10=\sqrt{8x^2-6x-5}\)
\(\Leftrightarrow16x^4+16x^2+100-80x^2-32x^3+80x=8x^2-6x-5\)
\(\Leftrightarrow16x^4-32x^3-64x^2+80x+100-8x^2+6x+5=0\)
\(\Leftrightarrow16x^4-32x^3-72x^2+86x+110=0\)
\(\Leftrightarrow2\left(x+1\right)\left(2x-5\right)\left(4x^2-2x-11\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\\4x^2-2x-11=0\Rightarrow\left[{}\begin{matrix}\dfrac{1+3\sqrt{5}}{4}\\\dfrac{1-3\sqrt{5}}{4}\end{matrix}\right.\end{matrix}\right.\)
Vậy ....
1) ( \(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\) ).\(\sqrt{2}\)
2. Tìm điều kiện:
1)\(\sqrt{-10x}\) 6) \(\sqrt{\dfrac{3x+21}{-5}}\)
2) \(\sqrt{6-3x}\) 7) \(\sqrt{\left(x^2+1\right).2x}\)
3) \(\dfrac{-4}{\sqrt{4x+6}}\) 8) \(\sqrt{\left(-x^2-2\right)}.3x\)
4) \(\dfrac{5}{\sqrt{2x}}\) 9) \(\sqrt{\dfrac{1}{\left(x-1\right)^2}}\)
5) \(\sqrt{\dfrac{-1}{2x-6}}\)
hộ mk với tí nx pk nộp r ;-; help
Bài 1:
Ta có: \(\left(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\right)\cdot\sqrt{2}\)
\(=\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\cdot\sqrt{2}\)
\(=6\sqrt{2}\cdot\sqrt{2}\)
=12
Bài 2:
1) ĐKXĐ: \(x\le0\)
2) ĐKXĐ: \(x\le2\)
3) ĐKXĐ: \(x>\dfrac{-3}{2}\)
4) ĐKXĐ: x>0
5) ĐKXĐ: x<3
1. \(2^3\sqrt{3x-2}+3\sqrt{6-5x}-8=0\)
2. \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
3. \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
Bài 2:
ĐKXĐ: $6\geq x\geq \frac{-1}{3}$
PT $\Leftrightarrow (\sqrt{3x+1}-4)+(1-\sqrt{6-x})+(3x^2-14x-5)=0$
$\Leftrightarrow \frac{3(x-5)}{\sqrt{3x+1}+4}+\frac{x-5}{\sqrt{6-x}+1}+(3x+1)(x-5)=0$
$\Leftrightarrow (x-5)\left[\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+(3x+1)\right]=0$
Với $x$ thuộc đkxđ, dễ thấy biểu thức trong ngoặc vuông $>0$
$\Rightarrow x-5=0$
$\Leftrightarrow x=5$
Bài 3:
PT $3x=\sqrt{x^2+12}-\sqrt{x^2+5}+5>0$
$\Rightarrow x>0$
Lại có:
PT $\Leftrightarrow \sqrt{x^2+12}-4=3(x-2)+(\sqrt{x^2+5}-3)$
$\Leftrightarrow \frac{x^2-4}{\sqrt{x^2+12}+4}=3(x-2)+\frac{x^2-4}{\sqrt{x^2+5}+3}$
$\Leftrightarrow (x-2)\left[\frac{x+2}{\sqrt{x^2+12}+4}-3-\frac{x+2}{\sqrt{x^2+5}+3}\right]=0$
Với $x>0$, dễ thấy:
$\frac{x+2}{\sqrt{x^2+5}+3}+3>\frac{x+2}{\sqrt{x^2+12}+4}$ nên biểu thức trong ngoặc vuông âm.
Do đó $x-2=0\Leftrightarrow x=2$ (tm)
Bài 1:
Đặt $\sqrt[3]{3x-2}=a; \sqrt{6-5x}=b$ với $b\geq 0$. Khi đó pt trở thành:
\(\left\{\begin{matrix}
2a+3b=8\\
5a^3+3b^2=8\end{matrix}\right.\Rightarrow 5a^3+3(\frac{8-2a}{3})^2=8\)
\(\Leftrightarrow 15a^3+(8-2a)^2=24\)
\(\Leftrightarrow 15a^3+4a^2-32a+40=0\)
\(\Leftrightarrow 15a^2(a+2)-26a(a+2)+20(a+2)=0\)
$\Leftrightarrow (a+2)(15a^2-26a+20)=0$
Dễ thấy $15a^2-26a+20>0$ nên $a+2=0$
$\Leftrightarrow a=-2$
$\Rightarrow b=4$
$\Rightarrow x=-2$
a) Cho bt : A = \(\left(\frac{6x+4}{3\sqrt{3x^3-8}}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)Rút gọn và tìm x nguyên sao cho A nguyên b) Cho x = \(\sqrt[3]{5\sqrt{6}+5}-\sqrt[3]{5\sqrt{6}-5}\)
Tính gtbt : B = \(x^3+15x\)
Câu a kia đề là \(3\sqrt{3x^3-8}\) hay \(3\sqrt{3x^3}-8\)
b/ \(x=\sqrt[3]{5\sqrt{6}+5}-\sqrt[3]{5\sqrt{6}-5}\)
\(\Rightarrow x^3=10-3x\left(\sqrt[3]{\left(5\sqrt{6}+5\right)\left(5\sqrt{6}-5\right)}\right)=10-15x\)
\(\Leftrightarrow x^3+15x=10\)
Rút gọn \(A=\left(\dfrac{6x+4}{3\sqrt{3x^3}-8}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\dfrac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
\(A=\left(\dfrac{6x+4}{3\sqrt{3x^3}-8}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\dfrac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
Điều kiện tự làm nha:
Đặt \(\sqrt{3x}=a\) thì ta có:
\(A=\left(\dfrac{2a^2+4}{a^3-8}-\dfrac{a}{a^2+2a+4}\right).\left(\dfrac{1+a^3}{1+a}-a\right)\)
\(=\left(\dfrac{2a^2+4}{\left(a-2\right)\left(a^2+2a+4\right)}-\dfrac{a}{a^2+2a+4}\right).\left(\dfrac{\left(1+a\right)\left(1-a+a^2\right)}{1+a}-a\right)\)
\(=\dfrac{a^2+2a+4}{\left(a-2\right)\left(a^2+2a+4\right)}.\left(1-2a+a^2\right)\)
\(=\dfrac{\left(a-1\right)^2}{a-2}=\dfrac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)