Phân tích các đa thức sau thành nhân tử:
\(e,30x^3-18x^2y-72y+120x\)
\(f,70x-84y+20xy-24y^2\)
Phân tích các đa thức sau thành nhân tử;
a,30x^3-18x^2y-72y+120x
b,70x-84y+20xy-24y^2
c,4x^2(x-2y)-(4x+1)(2y-x)
d,x^2-ax^-y+ay+cx^2-cy
e,a^3-b^3+3a^2+3ab+3b^2
Phân tích các đa thức sau thành nhân tử:
\(e,30x^3-18x^2y-72y+120x\)
\(f,70x-84y+20xy-24y^2\)
\(30x^3-18x^2y-72y+120x\)
= \(6\left(5x^3-3x^2y-12y+20x\right)\)
= \(6\left[x^2\left(5x-3y\right)+4\left(5x-3y\right)\right]\)
= \(6\left(x^2+4\right)\left(5x-3y\right)\)
\(70x-84y+20xy-24y^2\)
= \(2\left(35x-42y+10xy-12y^2\right)\)
= \(2\left[7\left(5x-6y\right)+2y\left(5x-6y\right)\right]\)
= \(2\left(5x-6y\right)\left(7+2y\right)\)
Phân tích đa thức thành nhân tử :
5x^3y^2-4x^2y^3-41x^2y^2-100x^2y+190xy^2+20xy^3-24y^3+375x+545xy-276y^2-1020y-1200
phân tích đa thức thành nhân tử
\(a)3x^3+6x^2y \)
\(b)2x^3-6x^2\)
\(c)18x^2-20xy\)
\(d)xy+y^2-x-y \)
\(e)(x^2y^2-8)^2-1\)
\(f)x^2-7x-8\)
\(g)10x^2(2x-y)+6xy(y-2x)\)
\(h)x^2-2x+1-y^2\)
\(i)2x(x+2)+x^2(-x-2)\)
\(k)-9+6x-x^2\)
\(l)8xy-2x^2-8y^2\)
\(m)3x^2+5x-3y^2-5y\)
a) 3x³ + 6x²y
= 3x².(x + 2y)
b) 2x³ - 6x²
= 2x².(x - 2)
c) 18x² - 20xy
= 2x.(9x - 10y)
d) xy + y² - x - y
= (xy + y²) - (x + y)
= y(x + y) - (x + y)
= (x + y)(y - 1)
e) (x²y² - 8)² - 1
= (x²y² - 8 - 1)(x²y² - 8 + 1)
= (x²y² - 9)(x²y² - 7)
= (xy - 3)(xy + 3)(x²y² - 7)
f) x² - 7x - 8
= x² - 8x + x - 8
= (x² - 8x) + (x - 8)
= x(x - 8) + (x - 8)
= (x - 8)(x + 1)
a: \(3x^3+6x^2y\)
\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)
b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)
c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)
d: \(xy+y^2-x-y\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
e: \(\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)
\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)
f: \(x^2-7x-8\)
\(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)
g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)
\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)
\(=2x\left(2x-y\right)\left(5x-3y\right)\)
h: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)
\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)
k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)
\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)
l: \(-2x^2+8xy-8y^2\)
\(=-2\left(x^2-4xy+4y^2\right)\)
\(=-2\left(x-2y\right)^2\)
m: \(3x^2+5x-3y^2-5y\)
\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y+5\right)\)
g) 10x²(2x - y) + 6xy(y - 2x)
= 10x²(2x - y) - 6xy(2x - y)
= 2x(2x - y)(5x - 3y)
h) x² - 2x + 1 - y²
= (x² - 2x + 1) - y²
= (x - 1)² - y²
= (x - y - 1)(x + y - 1)
i) 2x(x + 2) + x² (-x - 2)
= 2x(x + 2) - x²(x + 2)
= x(x + 2)(2 - x)
k) -9 + 6x - x²
= -(x² - 6x + 9)
= -(x - 3)²
l) 8xy - 2x² - 8y²
= -2(x² - 4xy + 4y²)
= -2(x - 2y)²
m) 3x² + 5x - 3y² - 5y
= (3x² - 3y²) + (5x - 5y)
= 3(x² - y²) + 5(x - y)
= 3(x - y)(x + y) + 5(x - y)
= (x - y)[3(x + y) + 5]
= (x - y)(3x + 3y + 5)
9 Phân tích đa thức sau thành nhân tử:
a) 9xy^2-18x^2y ; b) 6x^2-2y ; c)7x(x-y)-14y(y-x)
d)7-x^2 ; e) 16+8x+x^2 ; f)1-27x^3
g) x^3-9x^2+27x-27 ; h) (x+2y)^2-16y^2 ; i) x^3-64y^3
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
phân tích đa thức thành nhân tử
a, \(8xy^2-12x^2y+20xy\)
b,\(2x^2-50\)
c, \(x^2-6x+9-4y^2\)
a,=\(4xy\left(2y-3x+5\right)\)
b,=\(2\left(x^2-25\right)=2\left(x+5\right)\left(x-5\right)\)
c,=\(\left(x-3\right)^2-\left(2y\right)^2=\left(x-3-2y\right)\left(x-3+2y\right)\)
Phân tích các đa thức sau thành nhân tử: (x^2+2x)^2+9x^2+18x+20
\(\Rightarrow\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\cdot\left(x^2+2x\right)+20=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
g. \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{32}\)
\(a,=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\\ b,=\dfrac{1}{3}x\left(y+3xz+3z\right)\\ c,=2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
\(d,=x^2\left(\dfrac{2}{5}+5x+y\right)\\ e,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ f,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ g,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)