cho a b c là độ dài 3 cạnh tam giác Cmr a^2 - b^2 - c^2 + 2bc > 0
cho a,b,c là độ dài 3 cạnh của một tam giác
CMR a2 - b2 - c2 + 2bc > 0
Có : Đề=\(a^2-\left(b^2-2bc+c^2\right)\)\(=a^2-\left(b-c\right)^2\)\(=\left(a-b+c\right)\left(a+b-c\right)\)
mà theo đề ta có: \(a+c>b\)và \(a+b>c\)(theo bất đẳng thức trong tam giác-a,b,c là 3 cạnh của một tam giác)
==> \(a-b+c>0\)và \(a+b-c>0\)
Nhân vế theo vế hai biểu thức trên với nhau ta có:
\(\left(a-b+c\right)\left(a+b-c\right)>0\)==> Đpcm
Nhớ k mik nha
a) cho a>b>0 và 2( a² + b²)=5ab. tính P = 3a - b/ 2a+ b
b) cho a,b,c là độ dài 3 cạnh của 1 tam giác. cmr a²+2bc> b²+ c²
cho a b c là độ dài 3 cạnh tam giác. Chứng minh: a^2-b^2-c^2+2bc>0
Cho a, b, c là 3 cạnh của 1 tam giác. CMR a^2 - b^2 - c^2 + 2bc > 0
\(CMR:a^2-b^2-c^2+2bc>0\)
<=>\(\left(a-b-c\right)^2+2ab-2bc+2ac+2bc>0\)
<=>\(\left(a-b-c\right)^2+2ac+2ab>0\) ,(a,b,c >0) dfcm
giúp mình với
Cho a,b,c là độ dài 3 cạnh của 1 tam giác. CMR: a2 + 2bc > b2 + c2
Theo bất đẳng thức tam giác \(a>b-c\rightarrow a^2>\left(b-c\right)^2.\)
=> \(a^2>b^2-2bc+c^2\rightarrow a^2+2bc>b^2+c^2.\)
áp dụng bđt tam giác ta có :
a > b - c <=> a^2 > b^2 - 2bc + c^2 <=> a^2 + 2bc > b^2 + c^2
Nếu a,b,c là độ dài 3 cạnh trong tam giác
=> \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)>abc\)
\(\Leftrightarrow a^2+2bc>b^2+c^2\left(đpcm\right)\)
cho a; b; c là độ dài 3 cạnh một tam giác
CM: \(a^2-b^2-c^2+2bc>0\)
Vì a; b; c là độ dài 3 cạnh một tam giác nên \(a>b-c\) (bđt tam giác)
\(\Leftrightarrow a^2>\left(b-c\right)^2\)
\(\Leftrightarrow a^2-\left(b-c\right)^2>0\)
\(\Leftrightarrow a^2-\left(b^2-2bc+c^2\right)>0\)
\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)(đpcm)
Tui đang lười
Làm theo cái này
Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath
Vào câu hỏi tương tự cũng được. Ohe?
Cho a.b.c là độ dài 3 cạnh của một tam giác. CMR :
phương trình : \(x^2+2\sqrt{a^2+b^2+c^2}.x+2ab+2bc+2ca=0\)
Cho a, b, c là độ dài 3 cạnh tam giác. Chứng minh: a^2 - b^2 - c^2 + 2bc > 0
Mk cần gấp lắm! Giúp mk nhé!
Ta có\(a>b-c\)
Mà a;b;c là độ dài 3 cạnh của 1 tam giác nên a;b;c>0
\(\Rightarrow a^2>\left(b-c\right)^2\)
\(\Leftrightarrow a^2>b^2-2bc+c^2\)
\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)
Vậy \(a^2-b^2-c^2+2bc>0\)
cho a, b, c là các độ dài thỏa mãn: \(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}>1\)
cmr: a, b, c là độ dài các cạnh của tam giác