so sánh căn 2019 - căn 2014 và căn 19 - căn 14
so sánh căn 2019 - căn 2017 với căn 19 - căn 17
Cho A= căn 2012 + căn 2013 + căn 2014
B= căn 2009 + căn 2011 +căn 2019
So sánh A với B
so sánh căn 2016-căn 2015 và căn 2015 -căn 2014
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
căn 2016+căn 2015>căn 2015+căn 2014
=>1/(căn 2016+căn 2015)<1/(căn 2015+căn 2014)
=>căn 2016-căn 2015<căn 2015-căn 2014
so sánh căn 19 - căn 17 và căn 31 - căn 29
so sánh căn 2003 + căn 2015 và 2 căn 2014 ... không sử dụng máy tính
So sánh
1. căn 11 + căn 5 và 4
2. 3 căn 3 và căn 19 - căn 2
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
so sánh căn 31 - căn 19 và 6 - căn 17
\(6-\sqrt{17}=\sqrt{36}-\sqrt{17}>\sqrt{31}-\sqrt{17}>\sqrt{31}-\sqrt{19}\)
HAY \(6-\sqrt{17}>\sqrt{31}-\sqrt{19}\)
so sánh A=căn 2012 + căn 2014 với B=2 căn 2013
Ta có: \(A^2=4026+2\cdot\sqrt{2012\cdot2014}\)
\(B^2=4026+4026=4026+2\cdot\sqrt{2013^2}\)
mà \(2012\cdot2014< 2013^2\)
nên A<B
So sánh 1) 8 và căn 8 + căn 14 2) M= 2 + căn 3 N= 3 + căn 2
1: \(8^2=64=22+32=22+2\cdot16=22+2\cdot\sqrt{256}\)
\(\left(\sqrt{8}+\sqrt{14}\right)^2=22+2\cdot\sqrt{112}\)
mà \(16>\sqrt{112}\)
nên 8^2>(căn 8+căn 14)^2
=>8>căn 8+căn 14
2: \(\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)
\(\left(3+\sqrt{2}\right)^2=11+6\sqrt{2}\)
mà 7<11 và 4căn 3<6căn 2(48<72)
nên (2+căn 3)^2<(3+căn 2)^2
=>2+căn 3<3+căn 2