Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hương Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 6 2022 lúc 20:45

Xét tứ giác AHCK có

AH//CK

AK//CH

Do đó: AHCK là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCK là hình chữ nhật

Suy ra: Hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường(1)

Ta có: ABCD là hình bình hành

nen AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,BD,HK đồng quy

Đặng Hoàng Long
Xem chi tiết
pham anh khoa
Xem chi tiết
bui ha my
Xem chi tiết
Nguyễn Thị Thu Hương
15 tháng 3 2017 lúc 21:49

mk 0 bt nhng ai chat nhìu kt bn với mk nha

Nguyễn Nguyệt Nga
Xem chi tiết
Lỗ Thành Long
24 tháng 11 2016 lúc 21:25

ê kẻ đc hình chưa

 

Khoi My Tran
Xem chi tiết
Nguyễn Hiền Mai
6 tháng 2 2017 lúc 21:05

-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)

-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )

- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)

Nguyễn Hiền Mai
6 tháng 2 2017 lúc 21:10

2. Xét tam giác ABH và tam giác ACK có :

AB = AC (tam giác ABC cân tại A)

Góc A chung

góc AKC = góc AHB ( = 90 độ )

=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)

=>AH = AK ( cặp cạnh t/ứng )

Nguyễn Hiền Mai
6 tháng 2 2017 lúc 21:13

2.b)Xét tam giác AKI và tam giác AHI có:

AI chung

góc AKI = góc AHI = 90 độ

AH = AK (câu a)

=> góc KAI = góc HAI ( cặp góc t/ứng )

=> AI là p/giác góc A.

Han anh
Xem chi tiết
Hải Ngân
12 tháng 6 2017 lúc 19:43

Bài 2:

A B C D E H 1 2

a) Xét hai tam giác ABD và EBD có:

AB = EB (gt)

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

BD: cạnh chung

Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)

Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)

\(\widehat{BAD}=90^o\)

Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.

b) Vì AB = EB (gt)

\(\Rightarrow\) \(\Delta ABE\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực

Do đó: BD là đường trung trực của AE. (1)

c) Xét hai tam giác vuông ADH và EDC có:

DA = DE (\(\Delta ABD=\Delta EBD\))

\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)

Suy ra: AH = EC (hai cạnh tương ứng)

Ta có: BH = AB + AH

BC = EB + EC

Mà AB = EB (gt)

AH = EC (cmt)

\(\Rightarrow\) BH = BC

\(\Rightarrow\) \(\Delta BHC\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay

BD \(\perp\) HC (2)

Từ (1) và (2) suy ra: AE // HC (đpcm).

Jimin
Xem chi tiết
Hắc Hường
24 tháng 6 2018 lúc 16:08

Hình:

ABCHEF

Giải:

Theo hình vẽ và dữ kiện đề bài, ta liệt kê các góc nhọn:

\(\widehat{ABC};\widehat{ACB};\widehat{BHF};\widehat{FHA};\widehat{FAH};\widehat{AHE};\widehat{HAE};\widehat{EHC}\)

=> Có 8 góc nhọn

Ta có:

\(\left\{{}\begin{matrix}\widehat{FHE}=90^0\\\widehat{HEA}=90^0\\\widehat{FAE}=90^0\end{matrix}\right.\left(gt\right)\)

Suy ra tứ giác AFHE là hình chữ nhật

Từ đó, suy ra:

\(\left\{{}\begin{matrix}FH//AE\left(FH//AC\right)\\HE//AF\left(HE//AB\right)\end{matrix}\right.\)

* Xét trường hợp FH // AE ( FH // AC), có:

- \(\widehat{FHA}=\widehat{HAE}\) (Hai góc so le trong)

- \(\widehat{BHF}=\widehat{ACB}\) (Hai góc đồng vị)

* Xét trường hợp HE // AF ( HE // AB), có:

- \(\widehat{AHE}=\widehat{FAH}\) (Hai góc so le trong)

- \(\widehat{EHC}=\widehat{ABC}\) (Hai góc đồng vị)

Ta thấy có đủ 8 góc nhọn và có 4 cặp góc nhọn bằng nhau

Vậy ...

Cuong Vuduy
Xem chi tiết