Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang-g Seola-a
Xem chi tiết
mai a
Xem chi tiết
Sakura
Xem chi tiết
Trần Thanh Phương
13 tháng 8 2019 lúc 18:51

1. \(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-3\sqrt{x+3}-2\sqrt{x+7}+6=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy...

2. \(2x^2+2x+1=\sqrt{4x+1}\)

\(\Leftrightarrow2x^2+2x+1-\sqrt{4x+1}=0\)

\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x+1}=0\)

\(\Leftrightarrow4x+1-2\sqrt{4x+1}+1+4x^2=0\)

\(\Leftrightarrow\left(\sqrt{4x+1}-1\right)^2+4x^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+1}=1\\2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x+1=1\\x=0\end{matrix}\right.\)\(\Leftrightarrow x=0\)

Vậy...

Trần Thanh Phương
13 tháng 8 2019 lúc 19:01

3. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)

\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\frac{x+3}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=\frac{x+3}{2}\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1=\frac{x+3}{2}\)

Đặt \(\sqrt{x-1}=a\)

\(\Leftrightarrow x-1=a^2\Leftrightarrow x+3=a^2+4\)

\(pt\Leftrightarrow\left|a-1\right|+a+1=\frac{a^2+4}{2}\)

+) Xét \(a\le1\Leftrightarrow a-1\le0\Leftrightarrow1\le x\le2\)

\(pt\Leftrightarrow1-a+a+1=\frac{a^2+4}{2}\)

\(\Leftrightarrow2=\frac{a^2+4}{2}\)

\(\Leftrightarrow a^2+4=4\)

\(\Leftrightarrow a=0\)

\(\Leftrightarrow\sqrt{x-1}=0\)

\(\Leftrightarrow x=1\) ( thỏa )

+) Xét \(a\ge1\Leftrightarrow a-1\ge0\Leftrightarrow x>2\)

\(pt\Leftrightarrow a-1+a+1=\frac{a^2+3}{2}\)

\(\Leftrightarrow2a=\frac{a^2+3}{2}\)

\(\Leftrightarrow a^2+3=4a\)

\(\Leftrightarrow a^2-4a+3=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loai\right)\\x=10\left(thoa\right)\end{matrix}\right.\)

Vậy...

Minh Tuấn Phạm
Xem chi tiết
do thuy
Xem chi tiết
Mr Lazy
31 tháng 10 2015 lúc 20:07

c) (d tương tự)

\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)

và \(a+2b=5\)

--> Thế

\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)

Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)

Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.

y = 0 thì x = 1 (không thỏa pt ban đầu)

Xét y khác 0. Chia cả 2 vế của (*) cho y6

\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)

Không khả quan lắm :)) bạn tự tìm cách khác nhé.

Nguyễn Thị Bình Yên
Xem chi tiết
Akai Haruma
12 tháng 1 2019 lúc 17:28

Câu 1:

ĐK: \(x\geq -8\)

Đặt \(\sqrt{x+8}=a(a\geq 0)\) thì pt tương đương với:

\((4x+2)a=3x^2+6x+(x+8)=3x^2+6x+a^2\)

\(\Leftrightarrow 3x^2+6x+a^2-4ax-2a=0\)

\(\Leftrightarrow (4x^2-4ax+a^2)-x^2+6x-2a=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)-x^2+2x=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)+1-(x^2-2x+1)=0\)

\(\Leftrightarrow (2x-a+1)^2-(x-1)^2=0\)

\(\Leftrightarrow (x-a+2)(3x-a)=0\)

\(\bullet \)Nếu \(x-a+2=0\Leftrightarrow x+2=a\Rightarrow (x+2)^2=a^2=x+8\)

\(\Leftrightarrow x^2+3x+4=0\Rightarrow \left[\begin{matrix} x=1\\ x=-4\end{matrix}\right.\) . Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-4$ bị loại vì $x+2=a\geq 0$

\(\bullet \) Nếu \(3x-a=0\Rightarrow 3x=a\Rightarrow 9x^2=a^2=x+8\)

\(\Leftrightarrow 9x^2-x-8=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-8}{9}\end{matrix}\right.\). Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-\frac{8}{9}$ loại vì \(9x=a\geq 0\rightarrow x\geq 0\)

Vậy PT có nghiệm duy nhất $x=1$

Akai Haruma
12 tháng 1 2019 lúc 17:36

Câu 2:
ĐK: \(x\geq \frac{-1}{3}\)

Đặt \(\sqrt{3x+1}=a(a\geq 0)\). Khi đó pt đã cho tương đương với:

\(x^2+x+(3x+1)-2x\sqrt{3x+1}=\sqrt{3x+1}\)

\(\Leftrightarrow x^2+x+a^2-2ax=a\)

\(\Leftrightarrow (x^2+a^2-2ax)+(x-a)=0\)

\(\Leftrightarrow (x-a)^2+(x-a)=0\Leftrightarrow (x-a)(x-a+1)=0\)

\(\Rightarrow \left[\begin{matrix} x=a\\ x+1=a\end{matrix}\right.\)

Nếu \(x=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=3x+1\end{matrix}\right.\Rightarrow x=\frac{3+\sqrt{13}}{2}\) (t/m)

Nếu \(x+1=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-x=0\end{matrix}\right.\)

\(\Rightarrow x=0\) hoặc $x=1$

Vậy.........

Akai Haruma
12 tháng 1 2019 lúc 17:44

Câu 3:

Đặt \(\sqrt{x^2+3}=a(a\geq 0)\)

PT đã cho tương đương với:

\((x^2+3)+2x^2+2x=(3x+1)\sqrt{x^2+3}\)

\(\Leftrightarrow a^2+2x^2+2x=(3x+1)a\)

\(\Leftrightarrow a^2+2x^2+2x-3ax-a=0\)

\(\Leftrightarrow (a^2+4x^2-4ax)+2x-a-2x^2+ax=0\)

\(\Leftrightarrow (a-2x)^2-(a-2x)+x(a-2x)=0\)

\(\Leftrightarrow (a-2x)(a-x-1)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ a=x+1\end{matrix}\right.\)

Nếu \(2x=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq 0\\ 4x^2=x^2+3\end{matrix}\right.\Rightarrow x=1\) (t/m)

Nếu \(x+1=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=x^2+3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ 2x=2\end{matrix}\right.\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất $x=1$

tran huu dinh
Xem chi tiết
Hoàng Thanh Tuấn
28 tháng 5 2017 lúc 21:36

câu a:

\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)

đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành

\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)

có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)

\(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)\(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
Hoàng Thanh Tuấn
28 tháng 5 2017 lúc 21:47

Câu b:

Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)

PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)

có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)

\(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)\(t=x\Leftrightarrow x^2=x^2+1VN\)
Lê Nhật Phương
23 tháng 3 2018 lúc 23:53

b) phương trình đã cho nhân đôi sau đó biến đổi tương đương:

\(\left[\sqrt{x^2+1}-\left(x+3\right)\right]^2=8\)

\(\Leftrightarrow\sqrt{x^2+1}-\left(x+3\right)=\pm2\sqrt{2}\)

c) \(PT\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}=\left(3x+2\right)^2+2\left(3x+2\right)\)

xét: \(f\left(t\right)=t^2+2t\left(t>0\right)\)

      \(f\left(t\right)=2t+2>0\)

\(\Rightarrow\sqrt{\left(x+2\right)^3}=3x+2\)

Tự lm nốt nhé @tran huu dinh

:vvv
Xem chi tiết
Akai Haruma
18 tháng 6 2021 lúc 22:48

Lời giải:
Đặt $\sqrt[3]{x+1}=a;\sqrt[3]{x-1}=b$ thì pt trở thành:

\(\left\{\begin{matrix} a^2+b^2+ab=1\\ a^3-b^3=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ (a-b)(a^2+ab+b^2)=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ a-b=2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} (a-b)^2+3ab=1\\ a-b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(-b)=1\\ a+(-b)=2\end{matrix}\right.\)

Theo đl Viet đảo thì $a,-b$ là nghiệm của pt $X^2-2X+1=0$

$\Rightarrow a=-b=1$

$\Leftrightarrow \sqrt[3]{x+1}=1; \sqrt[3]{x-1}=-1$

$\Rightarrow x=0$

Vậy.........

Thuhuyen Le
Xem chi tiết