làm sao để chứng minh ba đường trung tuyến đồng qui tại một điểm vậy các bạn
Cho tam giác ABC có các đường trung tuyến BD và CE cắt nhau tại G. Gọi I là trung điểm BD và K là trung điểm CE. Chứng minh EI, DK, AG đồng qui
Cho tam giác ABC cân tại A có đường phân giác AD.
a) Chứng minh tam giác ADB = tam giác ADC, điểm D là gì.
b) Chứng minh đường phân giác AD và hai đường trung tuyến BE, CF của tam giác tam giác ABC đồng qui tại một điểm
Bài 2. Cho tam giác ABc cân tại A có đường trung tuyến AM, đường cao BE. Trên tia BA lấy điểm F sao cho BF = CE.
a)Chứng minh ΔBFC = ΔCEB
b) Chứng minh ba đường thẳng BE, CF, AM đồng quy
a: Xét ΔBFC và ΔCEB có
BF=CE
\(\widehat{FBC}=\widehat{ECB}\)
BC chung
Do đó: ΔBFC=ΔCEB
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
Ta có: ΔBFC=ΔCEB
nên \(\widehat{BFC}=\widehat{CEB}\)
mà \(\widehat{CEB}=90^0\)
nên \(\widehat{BFC}=90^0\)
Xét ΔABC có
AM là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
Do đó: AM,BE,CF đồng quy
a) Xét tam giác BFC và CEB ta có:
Góc FBC = góc ECB
BF = CE
BC cạnh chung
=> tam giác BFC = tam giác CEB (c-g-c)
a) Xét ΔBFC và ΔCEB có:
BF=EC(gt)
\(\widehat{FBC}=\widehat{ECB}\)(tam giác ABC cân tại A)
BC chung
=> ΔBFC=ΔCEB(c.g.c)
b) Xét tam giác ABC cân tại A có
AM là đường trung tuyến
=> AM là đường cao của tam giác ABC(1)
Ta có: ΔBFC=ΔCEB(cmt)
\(\Rightarrow\widehat{BFC}=\widehat{BEC}=90^0\)
=> CF là đường cao của tam giác ABC(2)
Từ (1),(2) và BE là đường cao của tam giác ABC
=> BE,,CF,AM đồng quy
Bài 2. Cho tam giác ABc cân tại A có đường trung tuyến AM, đường cao BE. Trên tia BA lấy điểm F sao cho BF = CE.
a)Chứng minh ΔBFC = ΔCEB
b) Chứng minh ba đường thẳng BE, CF, AM đồng quy
a: Xét ΔBFC và ΔCEB có
BF=CE
\(\widehat{FBC}=\widehat{ECB}\)
BC chung
Do đó: ΔBFC=ΔCEB
b: Ta có: ΔBFC=ΔCEB
nên \(\widehat{BFC}=\widehat{CEB}\)
mà \(\widehat{CEB}=90^0\)
nên \(\widehat{BFC}=90^0\)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
Xét ΔBAC có
AM là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
Do đó: AM,BE,CF đồng quy
Bài 2. Cho tam giác ABc cân tại A có đường trung tuyến AM, đường cao BE. Trên tia BA lấy điểm F sao cho BF = CE.
a)Chứng minh ΔBFC = ΔCEB
b) Chứng minh ba đường thẳng BE, CF, AM đồng quy
a: Xét ΔBFC và ΔCEB có
BF=CE
\(\widehat{FBC}=\widehat{ECB}\)
BC chung
Do đó: ΔBFC=ΔCEB
b: Ta có: ΔBFC=ΔCEB
nên \(\widehat{BFC}=\widehat{CEB}\)
mà \(\widehat{CEB}=90^0\)
nên \(\widehat{BFC}=90^0\)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
Xét ΔBAC có
AM là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
Do đó: AM,BE,CF đồng quy
Cho tam giác ABC, ba đường trung tuyến AD, BE, CF đồng quy tại điểm G. Trên BE, CF lần lượt lấy cái điểm M,N sao cho BM=1/3 BE: CN=1/3 CF. Chứng minh rằng ba đường thẳng AD, BN, CM đồng quy
Câu hỏi của ✎﹏ Ƈøoȴ _ Ǥɩ®ʆ _☜♥☞ ✓ - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Các bạn làm giúp mình với !!!
Cho nửa đường tròn (O; R) đường kính AB và một điểm E di động trên nửa đường tròn đó (E không trùng với A và B). Vẽ các tia tiếp tuyến Ax, By với nửa đường tròn. Tia AE cắt By tại C, tia BE cắt Ax tại D. a) Chứng minh rằng tích AD.BC không đổi. b) Tiếp tuyến tại E của nửa đường tròn cắt Ax, By theo thứ tự tại M và N. Chứng minh rằng ba đường thẳng MN, AB, CD đồng quy hoặc song song với nhau. c) Xác định vị trí của điểm E trên nửa đường tròn để diện tích tứ giác ABCD nhỏ nhất. Tính diện tích nhỏ nhất đó.
cho tam giác ABC vuông tại A; BD là phân giác của góc B ( D thuộc AC) trên tia BC lấy điểm E sao cho BA=BE
a; chứng minh các tam giác ABD và EBD bằng nhau
b; chứng minh rằng BD là đường trung trực của AE
c; chứng minh AD < DC
d; từ C kẻ đường thẳng CF vuông góc với đường thẳng BD ( F thuộc BD) chứng minh rằng các đường thẳng AB, DECF đồng qui
Có ai biết cách chứng minh định lý ba đường trung tuyến này không?
"Ba đường trung tuyến của một tam giác đồng quy tại một điểm, điểm đó gọi là trọng tâm của tam giác. Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng \(\frac{2}{3}\)độ dài đường trung tuyến đi qua đỉnh ấy