\(x^3-6x^2+11x-6\)
chứng tỏ x^3-6x^2+11x-6 chia hết cho 6
\(x^3-6x^2+11x-6\)
\(=x^3-3x^2-3x^2+9x+2x-6\)
\(=x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-3x+2\right)\)
\(=\left(x-3\right)\left(x^2-x-2x+2\right)\)
\(=\left(x-3\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
Vì x-1;x-2;x-3 là ba số nguyên liên tiếp
nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)⋮3!=6\)
=>\(x^3-6x^2+11x-6⋮6\)
Phân thức cá đa thức sau thành nhân tử
a ) x3 - 6x2 + 11x - 6
b ) x3 - 6x2 - 9x + 14
c ) x3 + 6x2 + 11x + 6
e) x6 - 9x3 + 8
a) x3 - 6x2 + 11x - 6
= ( x3 - 2x2 ) - ( 4x2 - 8x ) + ( 3x - 6 )
= x2( x - 2 ) - 4x( x - 2 ) + 3( x - 2 )
= ( x - 2 )( x2 - 4x + 3 )
= ( x - 2 )( x2 - x - 3x + 3 )
= ( x - 2 )[ x( x - 1 ) - 3( x - 1 ) ]
= ( x - 2 )( x - 1 )( x - 3 )
b) x3 - 6x2 - 9x + 14
= ( x3 - x2 ) - ( 5x2 - 5x ) - ( 14x - 14 )
= x2( x - 1 ) - 5x( x - 1 ) - 14( x - 1 )
= ( x - 1 )( x2 - 5x - 14 )
= ( x - 1 )( x2 + 2x - 7x - 14 )
= ( x - 1 )[ x( x + 2 ) - 7( x + 2 ) ]
= ( x - 1 )( x + 2 )( x - 7 )
c) x3 + 6x2 + 11x + 6
= ( x3 + 2x2 ) + ( 4x2 + 8x ) + ( 3x + 6 )
= x2( x + 2 ) + 4x( x + 2 ) + 3( x + 2 )
= ( x + 2 )( x2 + 4x + 3 )
= ( x + 2 )( x2 + x + 3x + 3 )
= ( x + 2 )[ x( x + 1 ) + 3( x + 1 ) ]
= ( x + 2 )( x + 1 )( x + 3 )
e) x6 - 9x3 + 8
Đặt t = x3
bthuc <=> t2 - 9t + 8
= t2 - t - 8t + 8
= t( t - 1 ) - 8( t - 1 )
= ( t - 1 )( t - 8 )
= ( x3 - 1 )( x3 - 8 )
= ( x - 1 )( x2 + x + 1 )( x - 2 )( x2 + 2x + 4 )
Tìm x
b)x3-6x2+11x-6=0
c)x4+6x3+11x2+6x+1=0
Mình cần gấp ạ, làm ơn giải cụ thể được không ạ? =((((
Tìm x
b)x3-6x2+11x-6=0
c)x4+6x3+11x2+6x+1=0
Mình cần gấp ạ, làm ơn giải cụ thể được không ạ? =((((
b) nhẩm đưuọc nghiệm x=1
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x^2-5x+6\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(x-2\right)\left(x-3\right)\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\) KL x=1,2,3
c)
(x^2+3x+1)^2=x^4+9x^2+1+6x^3+2x^2+6x (nhân pp dẽ hơn ghép)
\(\orbr{\begin{cases}x=\frac{3-\sqrt{5}}{2}\\x=\frac{3+\sqrt{5}}{2}\end{cases}}\)
tìm x biết x^3+6x^2+11x-6=0
1) Phân tích các đa thức sau thành nhân tử
a) x^3 - 6x^2 + 11x - 6
b) x^3 - 6x^2 - 9x+ 14
c) x^3+ 6x^2+ 11x+ 6
d)x^5+ x^4+ x^3+ x^2+ x+ 1
e) x^6 - 9x^3 + 8
g) x^6 + 27
2) Tìm x , biết
a) (x+3)^4 - (x-3)^4 - 24x^3 = 108
b) (x+2)^5 - (x-2)^5 = 64
Bài 1:
a: \(x^3-6x^2+11x-6\)
\(=x^3-x^2-5x^2+5x+6x-6\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
b: \(x^3-6x^2-9x+14\)
\(=x^3-7x^2+x^2-7x-2x+14\)
\(=\left(x-7\right)\left(x^2+x-2\right)\)
\(=\left(x-7\right)\left(x+2\right)\left(x-1\right)\)
c: \(x^3+6x^2+11x+6\)
\(=x^3+3x^2+3x^2+9x+2x+6\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
a) x3 - 6x2 + 11x - 6
b) 6x3 - 295x -7
Phân tích đa thức thành nhân tử:
\(a,x^3-6x^2+11x-6\)
\(=x^3-x^2-5x^2+5x+6x-6\)
\(=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x^2-3x-2x+6\right)\)
\(=\left(x-1\right)\left[x\left(x-3\right)-2\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
giải phương trinh sau : \(\left(x^3+6x^2+11x-2\right)^2+13\left(x^3+6x^2+11x-2\right)=-40\)
\(PT\Leftrightarrow\left(x^3+6x^2+11x-2\right)^2+13\left(x^3+6x^2+11x-2\right)+40=0\\ \Leftrightarrow\left(x^3+6x^2+11x-2+5\right)\left(x^3+6x^2+11x-2+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^3+6x^2+11x+3=0\left(\text{vô nghiệm}\right)\\x^3+6x^2+11x+6=0\end{matrix}\right.\\ \Leftrightarrow x^3+6x^2+11x+6=0\\ \Leftrightarrow x^3+x^2+5x^2+5x+6x+6=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+5x+6\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+3x+6\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-3\end{matrix}\right.\)
phân tích thành nhân tử
\(4x^3 -4x^2 -9x+9\)
\(x^3 +6x^2 +11x+6\)
\(x^2 y-x^3 -9y+9x\)
`@` `\text {Ans}`
`\downarrow`
`4x^3 - 4x^2 - 9x + 9`
`= (4x^3 - 4x^2) - (9x - 9)`
`= 4x^2(x - 1) - 9(x - 1)`
`= (4x^2 - 9)(x - 1)`
____
`x^3 + 6x^2 + 11x + 6`
`= x^3 + x^2 + 5x^2 + 5x + 6x + 6`
`= (x^3 + x^2) + (5x^2 + 5x) + (6x + 6)`
`= x^2*(x + 1) + 5x(x + 1) + 6(x + 1)`
`= (x^2 + 5x + 6)(x+1)`
____
`x^2y - x^3 - 9y + 9x`
`= (x^2y - 9y) - (x^3 - 9x)`
`= y(x^2 - 9) - x(x^2 - 9)`
`= (y - x)(x^2 - 9)`
b: =x^3+x^2+5x^2+5x+6x+6
=(x+1)(x^2+5x+6)
=(x+1)(x+2)(x+3)
c: =x^2(y-x)-9(y-x)
=(y-x)(x^2-9)
=(y-x)(x-3)(x+3)
a: =(4x^3-4x^2)-(9x-9)
=4x^2(x-1)-9(x-1)
=(x-1)(4x^2-9)
=(x-1)(2x-3)(2x+3)