\(x^3-6x^2+11x-6\)
\(=x^3-3x^2-3x^2+9x+2x-6\)
\(=x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-3x+2\right)\)
\(=\left(x-3\right)\left(x^2-x-2x+2\right)\)
\(=\left(x-3\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
Vì x-1;x-2;x-3 là ba số nguyên liên tiếp
nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)⋮3!=6\)
=>\(x^3-6x^2+11x-6⋮6\)