Chứng minh rằng :s=1/1.2+1/2.3+...+1/n.(n+1)
s ko phải số tự nhiên
Chứng minh rằng :S=1/1.2+1/2.3+...+1/n.(n+1)
ko phải số tự nhiên
Đk: n khác 0, n khác -1
\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}\)
Vì \(0< \dfrac{1}{n+1}< 1\) (n khác 0, n khác -1) nên \(0< 1-\dfrac{1}{n+1}< 1\)
hay 0<S<1
Vậy S không là stn
chung minh 1/1.2 + 1/2.3 +1/3.4 +1/4.5 + .....+1/n(n+1) ko phải là số tự nhiên với n thuộc N
Cho S= 1/n+3 + 1/n+4 + 1/n+5 +...+ 1/n+2015 vơis n là số tự nhiên Chứng minh rằng với mọi giá trị của n tổng S không phải số tự nhiên
S = 1.2 + 2.3 + 3.4 + ...... + n.(n+1)
C/m : 3.S là tích 3 số tự nhiên liên tiếp
Theo dạng tổng quát , ta có : 3S = n.( n + 1 ).( n + 2 )
Mà n.( n + 1 ).( n + 2 ) là h 3 số tự nhiên liên tiếp
=> 3S là h 3 số tự nhiên liên tiếp ( đpcm )
Cho S=1.2+2.3+3.4+...+n.(n+1)
CMR:3.S là tích của 3 số tự nhiên liên tiếp.
Cho S=1.2+2.3+3.4+...+n.(n+1)
C/M:3.S là tích của 3 số tự nhiên liên tiếp
3S=1.2.3+2.3.(4-1)+....................+n.(n+1).[(n+2)-(n-1)]
3S=1.2.3+2.3.4-1.2.3+.............+n.(n+1).(n+2)-(n-1).n.(n+1)
3S=n.(n+1).(n+2)
Rõ ràng 3S là tích của ba số tự nhiên liên tiếp
Cho S=1.2+2.3+3.4+...+n.(n+1) với n thuộc N*. Chứng minh rằng 3S+ n.(n+1).(n2-2) là số chính phương.
Lời giải:
$3S=1.2(3-0)+2.3.(4-1)+3.4(5-2)+...+n(n+1)[(n+2)-(n-1)]$
$=[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]$
$=n(n+1)(n+2)$
$\Rightarrow 3S+n(n+1)(n^2-2)=n(n+1)(n+2)+n(n+1)(n^2-2)$
$=n(n+1)(n+2+n^2-2)=n(n+1)(n^2+n)=n(n+1)n(n+1)=[n(n+1)]^2$ là số chính phương.
chung minh rang sô a=(1/1.2)+1/2.3+1/3.4+...+1/n(n+1) n thuoc Z khong phải là một số nguyên
A=1-1/2+1/2-1/3+...+1/n-1/n+1
=1-1/n+1
=n/n+1 không là số nguyên
Chứng minh rằng S ko phải số tự nhiên S= 1/101+1/102+1/103+....+1/109
'' / '' là gạch ngang phân số nha