Những câu hỏi liên quan
Cathy Trang
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 5 2020 lúc 23:19

Ta có:

\(\frac{1+a}{1+9b^2}=a+1-\frac{9b^2\left(a+1\right)}{1+9b^2}\ge a+1-\frac{9b^2\left(a+1\right)}{2\sqrt{9b^2}}=a+1-\frac{3b\left(a+1\right)}{2}\)

Tương tự: \(\frac{1+b}{1+9c^2}\ge b+1-\frac{3c\left(1+b\right)}{2}\) ; \(\frac{1+c}{1+9a^2}\ge c+1-\frac{3a\left(c+1\right)}{2}\)

Cộng vế với vế:

\(Q\ge4-\frac{3}{2}\left(ab+bc+ca+a+b+c\right)=\frac{5}{2}-\frac{3}{2}\left(ab+bc+ca\right)\)

\(Q\ge\frac{5}{2}-\frac{1}{2}\left(a+b+c\right)^2=2\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
Nguyễn Thị Kim Tuyến
Xem chi tiết
Nguyễn Thị Mát
28 tháng 11 2019 lúc 20:06

Áp dụng BĐT Bunhiacopxky :

\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)

\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)

\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)

Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)

\(P\le\frac{2}{3}+ab+bc+ac\)

Theo hệ quả quen thuộc của BĐT AM - GM :

\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)

Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Dra Hawk
Xem chi tiết
Lân Huỳnh Bảo
Xem chi tiết
Phan Thị Ngọc Tú
Xem chi tiết
Nguyễn Đặng Việt Tuấn
Xem chi tiết
Akai Haruma
23 tháng 9 2018 lúc 18:31

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((9a^3+3b^2+c)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\geq (a+b+c)^2=1\)

\(\Rightarrow 9a^3+3b^2+c\geq \frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)

\(\Rightarrow \frac{a}{9a^3+3b^2+c}\leq a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)

Thực hiện tương tự với các phân thức khác và cộng theo vế:

\(\Rightarrow P\leq \frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+(ab+bc+ac)\)

\(P\leq \frac{2}{3}+ab+bc+ac\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)

\(\Rightarrow P\leq \frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{\max}=1\)

Vậy GTLN của $P$ là $1$ khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
Dra Hawk
Xem chi tiết
Thanh Thúy Trần
Xem chi tiết
Akai Haruma
7 tháng 2 2020 lúc 18:18

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(1=\frac{1}{a}+\frac{4}{b}+\frac{9}{c}=\frac{9}{9a}+\frac{36}{9b}+\frac{9}{c}\geq \frac{(3+6+3)^2}{9a+9b+c}\)

\(\Rightarrow P\geq 144\)

Vậy $P_{\min}=144$

Dấu "=" xảy ra khi $\frac{3}{9a}=\frac{6}{9b}=\frac{3}{c}$ hay $a=4; b=8; c=36$

Bình luận (0)
 Khách vãng lai đã xóa
Trương Tuệ Nga
Xem chi tiết
Đặng Xuân Đạt
24 tháng 11 2017 lúc 20:18

fkfkbang14

Bình luận (0)