Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Minh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2023 lúc 19:41

=x^2-6x+9+4y^2-8y+4+2010

=(x-3)^2+(2y-2)^2+2010>=2010

Dấu = xảy ra khi x=3 và y=1

chuche
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 21:55

Câu 29:

a: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\)(luôn đúng)

Nguyễn Ánh Hằng
3 tháng 12 2021 lúc 14:24

Hả lơp 1 ????????

Đinh Nguyễn Gia Tích
27 tháng 6 2022 lúc 11:05

undefined

chuche
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 21:11

\(14,P=x^2+xy+y^2-3x-3y+3\\ P=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2-\dfrac{3}{2}y+3\\ P=\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\dfrac{3}{4}\left(y^2-2y+1\right)\\ P=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\ge0\)

Jennifer Song
12 tháng 10 2021 lúc 21:36

đây là lớp 4 ư

panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 2024 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 2024 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 2024 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Hai ne
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:13

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

Póe's Mun'ss
Xem chi tiết
ミ★kͥ-yͣeͫt★彡
16 tháng 9 2019 lúc 12:55

\(C=-x^2+10x-5=-\left(x^2-10+5\right)\)

\(=-\left(x^2-10x+25-20\right)\)

\(=-\left[\left(x-5\right)^2-20\right]\)

\(=-\left(x-5\right)^2+20\le20\)

Vậy \(C_{max}=20\Leftrightarrow x-5=0\Leftrightarrow x=5\)

cute
Xem chi tiết
Nguyễn Huy Tú
15 tháng 2 2022 lúc 21:52

a, \(A=-\left(x^2+8x+16-16\right)+5=-\left(x+4\right)^2+21\le21\forall x\)

Dấu ''='' xảy ra khi x = - 4

Vậy GTLN của A là 21 tại x = -4 

b, \(B=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)

\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)

Dấu ''='' xảy ra khi x = 1 ; y = -1/2 

Vậy GTLN của B là 7 tại x = 1 ; y = -1/2 

Nguyễn Minh Anh
15 tháng 2 2022 lúc 21:51

TK

undefined

Dark_Hole
15 tháng 2 2022 lúc 21:52

A = 5 − 8 x − x 2

= -(x2+8x+16)+21

= 21-(x+4)2 

Với mọi x thì ( x + 4 ) 2 >= 0

=> 21−(x+4)2=<21 Hay A=<21

Để A=21 thì (x+4)2=0

=>x+4=0

=> x = − 4

Câu sau để anh nghĩ đã nhé

♥๖Lan_Phương_cute#✖#girl...
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
23 tháng 10 2020 lúc 20:29

Tìm GTNN

A = x2 - 10x + 3 = ( x2 - 10x + 25 ) - 22 = ( x - 5 )2 - 22 ≥ -22 ∀ x

Dấu "=" xảy ra khi x = 5

=> MinA = -22 <=> x = 5

B = 3x2 + 7x - 2 = 3( x2 + 7/3x + 49/36 ) - 73/12 = 3( x + 7/6 )2 - 73/12 ≥ -73/12 ∀ x

Dấu "=" xảy ra khi x = -7/6

=> MinB = -73/12 <=> x = -7/6

Tìm GTLN

A = -9x2 + 12x - 5 = -9( x2 - 4/3x + 4/9 ) - 1 = -9( x - 2/3 )2 - 1 ≤ -1 ∀ x

Dấu "=" xảy ra khi x = 2/3

=> MaxA = -1 <=> x = 2/3

B = -2x2 - 3x + 7 = -2( x2 + 3/2x + 9/16 ) + 65/8 = -2( x + 3/4 )2 + 65/8 ≤ 65/8 ∀ x

Dấu "=" xảy ra khi x = -3/4

=> MaxB = 65/8 <=> x = -3/4

Khách vãng lai đã xóa
White Silver
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 12 2021 lúc 16:05

\(A=2\left(x^2-2xy+y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8067}{4}\)

\(A=2\left(x-y\right)^2+\left(x-\dfrac{3}{4}\right)^2+\dfrac{8067}{4}\ge\dfrac{8067}{4}\)

\(A_{min}=\dfrac{8067}{4}\) khi \(x=y=\dfrac{3}{2}\)