Cho a/b<c/d (b,d>0). C/m: a/b < ab+cd/b2+d2<c/d
Câu 5 (1đ): Cho a, b, c thỏa mãn a/b = c/d.Chứng minh rằng:a2 + b2/ c2+d2= ab/cd
cho a/b<c/d(b;d>0) cmr a/b<ab+cd/b2+d2<c/d giải giúp mình mình sắp đi hoc rồi
a/b < c/d va b;d > 0 CMR : a/b < ab+cd/b2+d2 < c/d
Cho cac so duong abcd a+b+c+d =4.cm1/ab+1/cd+1/bc+1/da lon hon hoac bang a2+b2+c2+d2
a/b < c/d va b;d > 0 CMR : a/b < ab+cd/b2+d2 < c/d
ai nhanh mình tick
bn tham khảo câu hỏi tươg tự nhé
cho a,b,c,d là các số tự nhiên thỏa mãn : đôi 1 khác nhau và a2+d2=b2+c2=t.
chứng minh ab+cd và ac+bd không thể đồng thời là số nguyên tố
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
Cho các số thực a, b, c, d thỏa điều kiện a2 + b2 + c2 + d2 = 2017. Tìm giá trị nghỏ nhất của biểu thức P = (45 + a)(45 + b) - cd
Cho a, b, c, d thõa a + b + c + d = 7 và a2 + b2 + c2 + d2 = 13. Tìm max a?
Áp dụng BĐT bunyakovsky:
\(7-a=b+c+d\le\sqrt{3\left(b^2+c^2+d^2\right)}=\sqrt{3\left(13-a^2\right)}\)
\(\Leftrightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\)
\(\Leftrightarrow49-14a+a^2\le39-3a^2\)
\(\Leftrightarrow4a^2-14a+10\le0\Leftrightarrow2\left(a-1\right)\left(2a-5\right)\le0\)
\(\Leftrightarrow1\le a\le\dfrac{5}{2}\)
Vậy \(A_{max}=\dfrac{5}{2}\)khi \(b=c=d=\dfrac{3}{2}\)
Bài 3 Cho a2+b2 = c2+d2 = 1 và ac+bd = 0. Chứng minh rằng ab+cd = 0
\(ac+bd=0\)
\(=\) \(abc^2+abd^2+cda^2+cdb^2\)
\(=\) \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)
\(=\) \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)
Cho a, b, c, d, q, p thỏa mãn p2 + q2 - a2 - b2 - c2 - d2 > 0. Chứng minh rằng : ( p2 - a2 - b2 )( q2 - c2 - d2 ) ≤ ( pq- ac - bd )2