Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
12. Nguyễn Vân Cương-7a
Xem chi tiết
kirito
Xem chi tiết
mình là ai
Xem chi tiết
mình là ai
1 tháng 8 2017 lúc 17:18
minh dang voi
Cuong mai
Xem chi tiết
mình là ai
Xem chi tiết
mình là ai
1 tháng 8 2017 lúc 20:20

số 2 là số mũ đo

ZzZ_Tiểu Thư Họ Vương_Zz...
1 tháng 8 2017 lúc 20:21

bn tham khảo câu hỏi tươg tự nhé

Nguyễn An
Xem chi tiết
Akai Haruma
17 tháng 8 2021 lúc 1:23

Lời giải:

Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$

$=(ad+bc)t$

Mà: 

$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$

Tương tự: $t> ac+bd$

Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:

$ab+cd> ad+bc, ac+bd> ad+bc$

Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý 

Do đó ta có đpcm.

 

Hattori Hejji
Xem chi tiết
Cường Hoàng
Xem chi tiết
Neet
21 tháng 6 2017 lúc 15:53

Áp dụng BĐT bunyakovsky:

\(7-a=b+c+d\le\sqrt{3\left(b^2+c^2+d^2\right)}=\sqrt{3\left(13-a^2\right)}\)

\(\Leftrightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\)

\(\Leftrightarrow49-14a+a^2\le39-3a^2\)

\(\Leftrightarrow4a^2-14a+10\le0\Leftrightarrow2\left(a-1\right)\left(2a-5\right)\le0\)

\(\Leftrightarrow1\le a\le\dfrac{5}{2}\)

Vậy \(A_{max}=\dfrac{5}{2}\)khi \(b=c=d=\dfrac{3}{2}\)

Như Khương Nguyễn
21 tháng 6 2017 lúc 8:28

2

Trần Khánh Linh
Xem chi tiết
Phía sau một cô gái
17 tháng 7 2021 lúc 10:10

       \(ac+bd=0\)

\(=\) \(abc^2+abd^2+cda^2+cdb^2\)

\(=\)  \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)

\(=\)  \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)

Rosie
Xem chi tiết