Cho tam giác ABC có AB = 48cm, BC = 50cm, AC = 14cm. Tính độ dài phân giác giác góc C
Cho tam giác ABC có BC = 50cm; AC = 14cm; AB = 48cm. Kẻ phân giác CD của góc C, kẻ AH vuông góc với CD tại H. Tính độ dài AD, CD, AH.
Cho ∆ABC , đường phân giác góc C cắt AB tại D , kẻ AH vuông góc CD . Biết AB = 48cm , BC = 50cm , AC = 14cm . Tính độ dài AD , CD , AH
BÀI 1: Tam giác ABC vuông tại A, ĐƯỜNG PHÂN GIÁC bd. Tính AB,AC biết rằng AD=4cm, DC=5 cm
Bài 2: Tam giác ABC có AB=30cm, AC=45cm, BC=50cm, đương phân giác BD
a)Tính BD, BC
b)Qua D vẽ DE//AB,DF//AC, E và F thuộc AC và AB. Tính các cạnh của tứ giác AEDF
Bìa 3: Tam giác ABC vuông tại A, AB =36cm, AC= 48cm, đường phân giác AK. Tia phân giác của góc B cắt AK tại I. Qua I kẻ đường thẳng song song với BC cắt AB ở D, cắt AC ở E.
a)Tính độ dài BK
b)Tính tỉ số AI/AK
c) Tính độ dài DE
Cho tam giác ABC có AB=12cm, BC=16cm, AC=14cm. Kẻ phân giác góc ABC cắt AC tại M. Tính độ dài các đoạn thẳng MA, MC?
cho tam giác abc có ab=30cm,ac=40cm,bc=50cm đường phân giác góc a cắt bc tại d qua d vẽ de//ab a)tính độ dài các đoạn bd,dc,de b)cm Tam giác bác vuông.tính diện tích Tam giác abc
a: Xét ΔCBA có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{30}=\dfrac{CD}{40}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=50
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{50}{7}\)
=>\(BD=\dfrac{150}{7}\left(cm\right);CD=\dfrac{200}{7}\left(cm\right)\)
Xét ΔABC có DE//AB
nên \(\dfrac{DE}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{DE}{30}=\dfrac{200}{7}:50=\dfrac{4}{7}\)
=>\(DE=\dfrac{120}{7}\left(cm\right)\)
b: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
=>Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot30\cdot40=15\cdot40=600\left(cm^2\right)\)
Cho tam giác ABC có AB=14cm, AC=14cm, BC=12cm. Đường phân giác của góc BAC cắt BC ở D
a) Tính độ dài DB và DC
b) Tính tỉ số diện tích của hai tam giác ABD và ACD
c) Qua D kẻ đường thẳng song song với AB cắt cạnh AC ở E. Tính DE, AE, EC
a: ΔABC cân tại A
mà AD là phân giác
nên D là trung điểm của BC
=>DB=DC=6cm
b: Xét ΔADB và ΔADC có
AD chung
góc BAD=góc CAD
AB=AC
=>ΔADB=ΔADC
=>\(\dfrac{S_{ADB}}{S_{ADC}}=1\)
c: Xet ΔCAB có DE//AB
nên DE/AB=CD/CB=1/2
=>DE=7cm
DE//AB
=>CE/CA=CD/CB
=>CE/14=1/2
=>CE=7cm
=>AE=7cm
Cho tam giác ABC có AB=14cm, AC=13cm, BC=12cm. Đường phân giác của góc BAC cắt BC ở Da) Tính độ dài DB và DCb) Tính tỉ số diện tích của hai tam giác ABD và ACD giúp tớ với ạ
3.Cho tam giác ABC vuông tại A có AB= 14cm, BC= 50cm. Gọi h là trung điểm AC. Đường vuông góc được vẽ từ H của AC cắt đường phân giác góc B ở K, và cắt BC tại M. Từ H hạ HD vuông góc BC (H thuộc BC).
a) tính HC.
b) CM: tam giác BKC vuông.
c) tính BK.
d) CM: DB^2 – DC^2= AB^2
Cho tam giác ABC có AB=14cm, AC=14cm, BC=12cm. Đường phân giác của góc BAC cắt BC ở D
a) Tính độ dài DB và DC
b) Tính tỉ số diện tích của hai tam giác ABD và ACD
giúp tớ với ạ
a) Xét tam giác BAD và CAD có:
AB=AC=14cm
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác)
AD cạnh chung
=> \(\Delta BAD=\Delta CAD\left(c.g.c\right)\)
=> BD=CD
Mà BD+CD=BC=12 cm
=> BD=DC=12:2=6(cm)
b) Vì AB=AC, BD=DC
=> AD là đường trung trực của BC
=> AD _|_ BC
=> \(S_{\Delta ABD}=\frac{1}{2}AD\cdot BD;S_{\Delta CAD}=\frac{1}{2}AD\cdot DC\)
\(\frac{S_{\Delta ABD}}{S_{\Delta CAD}}=\frac{AD\cdot BD}{AD\cdot DC}=\frac{AD}{DC}=1\)