So Sánh \(4\) và \(4\sqrt{5}-\sqrt{26}\)(ko Dùng máy tính)
So sánh mà ko dùng máy tính:\(\sqrt{12+6\sqrt{ }3}\) và \(\sqrt{9+4\sqrt{ }5}\)
Ta có: \(12>9\)
\(6\sqrt{3}>4\sqrt{5}\)
Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)
\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)
So sánh x,y (ko dùng máy tính cầm tay)
x=\(\sqrt{3}\)+ \(\sqrt{5}\)
y=\(\sqrt{2}\)+ \(\sqrt{6}\)
\(x^2=3+5+2\sqrt{15}=8+\sqrt{60}\)
\(y^2=2+6+2\sqrt{12}=8+\sqrt{48}\)
Mà \(60>48\Rightarrow\sqrt{60}>\sqrt{48}\Rightarrow8+\sqrt{10}>8+\sqrt{48}\)
\(\Rightarrow x^2>y^2\Rightarrow x>y\) (do x;y đều dương)
So sánh : \(\sqrt{2016}-\sqrt{2015}và\sqrt{2015}-\sqrt{2014}\)
Ko dùng máy tính
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
mà \(\sqrt{2016}+\sqrt{2015}>\sqrt{2014}+\sqrt{2015}\)
nên \(\sqrt{2016}-\sqrt{2015}< \sqrt{2015}-\sqrt{2014}\)
ko dùng máy tính hãy so sánh \(\sqrt{3}+\sqrt{8}+\sqrt{24}\)và 10
theo ket qua cho thay:9.4594<10
Ta có :
\(\sqrt{3}< \sqrt{4}=2\)
\(\sqrt{8}< \sqrt{9}=3\)
\(\sqrt{24}< \sqrt{25}=5\)
\(\Rightarrow\sqrt{3}+\sqrt{8}+\sqrt{24}< 2+3+5=10\)(đpcm)
Vậy ...
\(\sqrt{3}+\sqrt{8}+\sqrt{24}< \sqrt{4}+\sqrt{9}+\sqrt{25}\)
\(=2+3+5=10\)
Vậy: \(\sqrt{3}+\sqrt{8}+\sqrt{24}< 10\)
ko dùng máy tính hãy so sánh :
\(\sqrt{27}-\sqrt{12}-\sqrt{2016}và-44\)
\(\sqrt{27}-\sqrt{12}-\sqrt{2016}>\sqrt{25}-\sqrt{16}-\sqrt{2025}\)
\(=5-4-45=-44\)
Vậy \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
Có : \(\sqrt{12}< \sqrt{16}=4\)
\(\sqrt{2016}< \sqrt{2025}\) => \(\sqrt{12}+\sqrt{2016}< 4+45\)
=> \(-\sqrt{12}-\sqrt{2016}>-49\)(1)
Lại có : \(\sqrt{27}>\sqrt{25}=5\)(2)
Từ (1),(2) có : \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>5-49\)or \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
So sánh ko dùng máy tính: \(28\sqrt{2},\sqrt{14},2\sqrt{147},36\sqrt{4}\)
(sắp xếp theo thứ tự tăng dần)
Bài làm
Ta có: \(28\sqrt{2}\approx39,6\)
\(\sqrt{14}\approx3,7\)
\(2\sqrt{147}\approx24,2\)
\(36\sqrt{4}=72\)
Nên \(36\sqrt{4}>28\sqrt{2}>2\sqrt{147}>\sqrt{14}\left(72>39,6>24,2>3,7\right)\)
Vậy sắp xếp theo thứ tự tăng dần là: \(36\sqrt{4},28\sqrt{2},2\sqrt{147},\sqrt{14}\)
# Học tốt #
\(\sqrt{14}=\sqrt{7}\sqrt{2};2\sqrt{147}=\sqrt{294}\sqrt{2};36\sqrt{4}=\sqrt{2592}\sqrt{2}\)
từ đó so sánh
\(28\sqrt{2}=\sqrt{28^2\cdot2}=\sqrt{784\cdot2}=\sqrt{1568}.\)
\(\sqrt{14}\)
\(2\sqrt{147}=\sqrt{2^2\cdot147}=\sqrt{4\cdot147}=\sqrt{588}\)
\(36\sqrt{4}=\sqrt{36^2\cdot4}=\sqrt{1296\cdot4}=\sqrt{5184}\)
=> Sắp sếp theo thứ tự tăng dần là \(\sqrt{14};\sqrt{588};\sqrt{1568};\sqrt{5184}\)
=> \(\sqrt{14};2\sqrt{147};28\sqrt{2};36\sqrt{4}\)
:3
So sánh (ko dùng máy tính)
\(\frac{\sqrt{8}}{3}\) và \(\frac{3}{4}\)
Có \(\sqrt{8}\). 4 = \(\sqrt{\frac{128}{16}}\).4 > \(\sqrt{\frac{81}{16}}\).4 = 9/4 . 4 =9 = 3.3
<=> \(\frac{\sqrt{8}}{3}\)> 3/4
Ko dùng máy tính hãy so sánh
\(\sqrt{35}+\sqrt{99}\)Và 16
\(\sqrt{35}+\sqrt{99}< \sqrt{36}+\sqrt{100}=6+10=16\)
Vậy \(\sqrt{35}+\sqrt{99}< 16\)
So sánh ( không dùng bảng số hay máy tính bỏ túi)
a) 6 + 2$\sqrt{2}$ và 9
b) $\sqrt{2}+\sqrt{3}$ và 3
c) 9 + 4$\sqrt{5}$ và 16
d) $\sqrt{11}-\sqrt{3}$ và 2
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)