cho phương trình x^2-mx-x-m-3 =0
cmr pt luôn có 2 nghiệm phân biệt
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho phương trình \(x^2-mx+m-x=0\)
Giải phương trình với m = 3
Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi m .
Với m=3
\(PT\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy pt có 2 nghiệm x=1, x=3 khi m=3
ta có \(x^2-mx+m-x\)
=\(x\left(x-m\right)+\left(m-x\right)\)
=\(x\left(x-m\right)-\left(x-m\right)\)
=\(\left(x-m\right)\left(x-1\right)\)
với m=3 thì
\(\left(x-3\right)\left(x-1\right)=0\)
=>\(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)=>\(\hept{\begin{cases}x=3\\x=1\end{cases}}\)
vậy...
bn tự kết luận nhé
cho pt x2 +m -2= mx+x(x là ẩn số)
chứng tỏ pt luôn có hai nghiệm phân biệt x1 ;x2
\(\Rightarrow x^2-mx-x+m-2=0\) \(\Rightarrow x^{^2}-x\left(m+1\right)+m-2=0\)
\(\)\(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2+2m+1-4m+8=m^2-2m+9=\left(m-1\right)^2+8\ge8>0\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt x1, x2
Cho phương trình: x^2 - 2mx + 3m - 2 = 0a . giải pt vs m=-1b cmr pt luôn có 2 nghiệm phân biệt vs mọi m
\(x^2-2mx+3m-2=0\)
Thay m = -1 vào PT ta được:
\(x^2-2\left(-1\right)x+3\left(-1\right)-2=0\)
\(\Rightarrow x^2+2x-5=0\)
\(\Delta'=b'^2-ac=1^2-1.\left(-5\right)=6>0\)
Do \(\Delta'>0\Rightarrow\)PT có hai nghiệm phân biệt:
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-1+\sqrt{6}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=-1-\sqrt{6}\)
Jup mik vs mik đang cần gấp x^2-mx-3=0 CM phương trình luôn có 2 nghiệm phân biệt với mọi m
Ta có:
`Delta`
`=m^2+12>=12>0`
`=>` pt có 2 nghiệm phân biệt `AAm`
Cách dễ hơn:
`ac=-3=>b^2-4ac>0`
`=>` pt có 2 nghiệm phân biệt `AAm`
Cho phương trình x2 -2mx - 3m2 + 4m -2 = 0
CMR phương trình luôn có 2 nghiệm phân biệt
Tìm m để A = | x1 - x2| có GTNN
Lời giải:
Có: $\Delta'=m^2-(-3m^2+4m-2)=4m^2-4m+2=(2m-1)^2+1\geq 1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm phân biệt với mọi $m$.
Khi đó, áp dụng định lý Viet với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=2m$
$x_1x_2=-3m^2+4m-2$
Khi đó:
$A=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}$
$=\sqrt{(2m)^2-4(-3m^2+4m-2)}=2\sqrt{(2m-1)^2+1}\geq 2\sqrt{1}=2$
Vậy $A_{\min}=2$. Giá trị này đạt tại $2m-1=0\Leftrightarrow m=\frac{1}{2}$
cho phương trình ẩn x: \(x^2=2mx+2m+8\)(1)
a. giải pt đã cho khi m=4
b. Chứng minh PT luôn có 1 nghiệm phân biệt vs mọi m
c. tìm giá trị của m để phương trình (1) có hai nghiệm x1,x2 sao cho x1+ 2x2=2
Bài 3: Cho phương trình: x2 + mx – 2 = 0 (ẩn x) (m là tham số)
a/ Giải pt với m=3
b/ Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x12, x2 + x21x1 = 2014
\(a,m=3=>x^2+3x-2=0\)
\(\Delta=3^2-4\left(-2\right)=17>0\)
pt có 2 nghiệm pb \(\left[{}\begin{matrix}x1=\dfrac{-3+\sqrt{17}}{2}\\x2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
b,\(\Delta=m^2-4\left(-2\right)=m^2+8>0\)
=> pt đã cho luôn có 2 nghiệm phân biệt x1,x2 với mọi m
theo vi ét \(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=-2\end{matrix}\right.\)
có \(x1^2x2+x2^2x1=2014< =>x1x2\left(x1+x2\right)=2014\)
\(< =>-2\left(-m\right)=2014< =>m=1007\)
a) Thay m=3 vào phương trình, ta được:
\(x^2+3x-2=0\)
\(\Delta=3^2-4\cdot1\cdot\left(-2\right)=9+8=17\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)
1:cho phương trình : x2 -2mx+m2-m-3=0
a, tìm m để phương trình có 2 nghiệm trái dấu
b, tìm m để phương trình có 2 nghiệm phân biệt dương
câu 2: cho pt: x2+(2m-1)x-m=0
a, chứng tỏ rằng pt luôn có 2 nghiệm với mọi m
b, Tìm m để pt có 2 nghiệm x1,x2 TM x1-x2=1
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán